THE PROBABILISTIC METHOD WEEK 9: RANDOM GRAPHS

JOSHUA BRODY CS49/MATH59 FALL 2015

READING QUIZ

In a bin are **n** balls, numbered **1**, **2**, **3**, **...**, **n-2**, **n-1**, **n**. **r** of the balls are colored **blue**. How many ways are there to pick **t** balls from the bin without replacement?

(A) (n choose t)

(B) (n choose r)

- (C) $\sum_{k=0}^{r}$ (r choose k)*(n-r choose t-k)
- (D) $\sum_{k=0}^{r}$ (r choose k)*(n-r choose k)
- (E) multiple answers correct

READING QUIZ

In a bin are **n** balls, numbered **1**, **2**, **3**, **...**, **n-2**, **n-1**, **n**. **r** of the balls are colored **blue**. How many ways are there to pick **t** balls from the bin without replacement?

(A) (n choose t)

(B) (n choose r)

(C) $\sum_{k=0}^{r}$ (r choose k)*(n-r choose t-k)

(D) $\sum_{k=0}^{r}$ (r choose k)*(n-r choose k)

(E) multiple answers correct

ZERO-ONE LAWS

Definition: fix $0 . Property P obeys 0-1 law if <math>\lim_{n\to\infty} \Pr[G(n,p) \text{ has P}] = 0 \text{ or } 1$.

Examples:

- G has triangle
- G has no isolated vertex
- G has diameter < 2

Theorem: fix 0 < p < 1. Any property expressed in first-order theory of graphs obeys 0-1 law.

What property does the following sentence represent?

∃x ∃y ∃z [¬(x=y) ∧ ¬(x=z) ∧ ¬(y=z) ∧ x~y ∧ x~z ∧ y~z]

(A) G has a triangle

(B) G has diameter ≤ 2

(C) G has no isolated vertex

(D) G has an independent set of size ≤ 3

(E) None of the above

What property does the following sentence represent?

∃x ∃y ∃z [¬(x=y) ∧ ¬(x=z) ∧ ¬(y=z) ∧ x~y ∧ x~z ∧ y~z]

(A) G has a triangle

(B) G has diameter ≤ 2

(C) G has no isolated vertex

(D) G has an independent set of size ≤ 3

(E) None of the above

CONCENTRATION OF MEASURE FOR CLIQUE NUMBER

Definition: CL(G) := size of largest clique in G

Theorem: If G ~ G(n,p) then almost always CL(G(n,p)) ~ 2log(n)/log(1/p).

CONCENTRATION OF MEASURE FOR CLIQUE NUMBER

Definition: CL(G) := size of largest clique in G

Theorem: If G ~ G(n,p) then almost always CL(G(n,p)) ~ 2log(n)/log(1/p).

- Suppose that r = clog(n) for some constant c. What is $E[Y_r]$?
- (A) $E[Yr] \approx 2^{c(1-c/2)\log(n)}$
- (B) E[Yr] ≈ (n choose log(n)) * 2^{-(clog(n) choose 2)}
- (C) E[Yr] $\approx 2^{clog(n)^2 (c^2/2)^{slog(n)^2}}$
- **(D)** Multiple answers correct
- (E) None of the above

- Suppose that r = clog(n) for some constant c. What is $E[Y_r]$?
- (A) E[Yr] $\approx 2^{c(1-c/2)\log(n)}$

(B) E[Yr] \approx (n choose log(n)) * 2^{-(clog(n) choose 2)}

(C) E[Yr] $\approx 2^{clog(n)^2} - (c^2/2)^{slog(n)^2}$

(D) Multiple answers correct

(E) None of the above

CONCENTRATION OF MEASURE FOR CLIQUE NUMBER

Definition: CL(G) := size of largest clique in G

Results: (1) If r = 2log(n) then almost always CL(G) < r (2) If r = 2(1-o(1))log(n) then a.a. CL(G) > r

ESTIMATING E[Y_R²]

THE PROBABILISTIC METHOD

www.chelkheardmassfeste com