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Reading Quiz

(A) a probability distribution

(B) a random variable

(C) a random graph

(D) a probability space

(E) multiple answers correct

What is a G(n,p)?
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Random Graphs

G ~ G(n,p) : random graph on n vertices V = {1, ..., n}   
each edge (i,j) ∈ E independently with prob. p

[Erdős-Rényi 60]

G(n,p) : probability distribution
G : random variable



Clicker Question

(A) S, T share at least one vertex

(B) S, T share at least one edge

(C) S, T share at least two vertices

(D) (A) and (B)

(E) (B) and (C)

When are AS and AT not independent?
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Clique Threshold recap

Theorem: If p >> n-2/3 then G almost surely has a 4-clique.
proof:  X := # 4-cliques in G
• E[X] ~ n4p6/24 →∞
• Var[X] ≤ E[X] + ∑S~T Pr[AS ∩ AT]
• For any S:

• O(n2) T with |S ∩ T| = 2;  Pr[AT|AS] = p5

• O(n) T with |S ∩ T| = 3;  Pr[AT|AS] = p3

• ∑T~S Pr[AS ∩ AT] = O(n2p5) + O(np3) = o(E[X])
• ∑S~T Pr[AS ∩ AT]  = ∑S Pr[AS] ∑T~S Pr[AT | AS]

 = ∑S Pr[AS]o(E[X])
 = o(E[X]2)

• Var[X] ≤ E[X] + o(E[X]2) = o(E[X]2)
• Therefore X ~ E[X] >> 0 almost always.
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Threshold Functions

Definition:  r(n) is a threshold function for graph 
property P if 

(1) If p << r(n) then G(n,p) almost never has P
(2) If p >> r(n) then G(n,p) almost always has P

Examples: 
• CL(G) ≥ 4 has threshold function r(n) = n-2/3

• Connected has threshold function r(n) = ln(n)/n
• Largest Component:
★ p < (1-c)/n then largest component is O(log n)
★ p = 1/n then largest component is n2/3

★ p > (1+c)/n then largest component is > n/2
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Examples:
• degrees:  deg(v) ~ pn almost always (Chernoff Bounds)
• clique number:  CL(G) ~ 2log(n) almost always 

★ there is r ~2log(n)/log(1/p) s.t. CL(G) = r or r+1 
almost always

• chromatic number:  𝝌(G) = # colors needed to color G
★ 𝝌(G) ~ n log(1/1-p) / 2log(n)  almost always

• diameter: max distance between nodes 
★ diam(G) ~ log(n)/log(pn) almost always (if p >> 1/n)
★ if p = Ω(log(n)/n) then concentration is on O(1) values



Zero-One Laws

Definition:  fix 0 < p < 1.  Property P obeys 0-1 law if 
limn→∞ Pr[G(n,p) has P] = 0 or 1.



Zero-One Laws

Definition:  fix 0 < p < 1.  Property P obeys 0-1 law if 
limn→∞ Pr[G(n,p) has P] = 0 or 1.

Examples:  
• G has triangle
• G has no isolated vertex
• G has diameter < 2



Zero-One Laws

Definition:  fix 0 < p < 1.  Property P obeys 0-1 law if 
limn→∞ Pr[G(n,p) has P] = 0 or 1.

Examples:  
• G has triangle
• G has no isolated vertex
• G has diameter < 2

Theorem:  fix 0 < p < 1.  Any property expressed in 
first-order theory of graphs obeys 0-1 law.
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