THE PROBABILISTIC METHOD WEEK 8: SECOND MOMENT METHOD

JOSHUA BRODY CS49/MATH59 FALL 2015

READING QUIZ

What is a graph property?

- (A) a set of graphs
- (B) a set of graphs closed under addition of edges
- (C) a set of graphs closed under addition of vertices
- (D) a set of graphs closed under isomorphism
- (E) None of the above

READING QUIZ

What is a graph property?

(A) a set of graphs

(B) a set of graphs closed under addition of edges

(C) a set of graphs closed under addition of vertices

(D) a set of graphs closed under isomorphism

(E) None of the above

THE FIRST MOMENT METHOD

Basic Method:

- (1) Define bad events **BAD**_i
- (2) **BAD** := \cup_i **BAD**_i
- (3) bound $\Pr[BADi] \leq \delta$
- (4) Compute # bad events $\leq m$
- (5) union bound: **Pr[BAD]** $\leq m\delta < 1$
- (6) ∴ **Pr[GOOD] > 0**

as First Moment Method:

- (1) Z_i: indicator var for BAD_i
- (2) $Z := \sum_{i} Z_{i}$
- (3) $\mathbf{E}[\mathbf{Z}_i] = \mathbf{Pr}[\mathbf{BAD}_i] \le \delta$
- **m** (4) Compute # bad events \leq **m**
 - (5) $\mathbf{E}[\mathbf{Z}] = \mathbf{E}[\mathbf{Z}_i] \le \mathbf{m}\delta < 1$
 - (6) ∴ **Z** = **0 w/prob** > **0**

EXPLOITING EXPECTED VALUE

Suppose X is non-negative, integer random variable

Fact: $Pr[X > 0] \le E[X]$

EXPLOITING EXPECTED VALUE

Suppose X is non-negative, integer random variable

Fact:
$$Pr[X > 0] \le E[X]$$

Consequences:

- •If **E[X]** < 1, then **Pr[X=0]** > 0
- •If E[X] = o(1), then Pr[X=0] = 1-o(1)
- •If $E[X] \rightarrow \infty$, then ???

Theorem: $Pr[X = 0] \le Var[X]/E[X]^2$

proof:

•use Chebyshev's Inequality with $\alpha := E[X]$

Theorem: $Pr[X = 0] \le Var[X]/E[X]^2$

proof:

•use Chebyshev's Inequality with $\alpha := E[X]$

Consequences:

• If Var[X] = o(E[X]²), then Pr[X=0] = o(1)

Theorem: $Pr[X = 0] \le Var[X]/E[X]^2$

proof:

•use Chebyshev's Inequality with $\alpha := E[X]$

Theorem: $Pr[X = 0] \le Var[X]/E[X]^2$

proof:

•use Chebyshev's Inequality with $\alpha := E[X]$

Consequences:

X > 0 "almost always"

- If $Var[X] = o(E[X]^2)$, then Pr[X=0] = o(1)
- If Var[X] = o(E[X]²), then X ~ E[X] almost always.

RANDOM GRAPHS

[Erdős-Rényi 60]

G ~ **G**(**n**,**p**) : random graph on **n** vertices **V** = {1, ..., n} each edge (i,j) \in **E** independently with prob. **p**

G(n,p) : probability distribution **G** : random variable

CLICKER QUESTION

When are As and AT not independent?

- (A) S, T share at least one vertex
- (B) S, T share at least one edge
- (C) S, T share at least two vertices
- (D) (A) and (B)
- (E) (B) and (C)

CLICKER QUESTION

When are As and AT not independent?

- (A) S, T share at least one vertex
- (B) S, T share at least one edge
- (C) S, T share at least two vertices
- (D) (A) and (B)

(E) (B) and (C)

THE PROBABILISTIC METHOD

www.chalkboordmansfesto com