THE PROBABILISTIC METHOD WEEK 8: SECOND MOMENT METHOD

JOSHUA BRODY CS49/MATH59 FALL 2015

What is Cov[X,Y]?

- (A) Cov[X,Y] = E[X]E[Y] E[XY]
- (B) Cov[X,Y] = E[XY] E[X]E[Y]
- (C) Cov[X,Y] = E[(X-E[X])2]
- (D) Cov[X,Y] = Var[XY] E[XY]
- (E) None of the above

What is Cov[X,Y]?

- (A) Cov[X,Y] = E[X]E[Y] E[XY]
- (B) Cov[X,Y] = E[XY] E[X]E[Y]
- (C) Cov[X,Y] = E[(X-E[X])2]
- (D) Cov[X,Y] = Var[XY] E[XY]
- (E) None of the above

About how many prime factors does a typical integer n have?

(A) √n

(B) log(n)

(C) In(In n)

(D) log(ln(ln n))

(E) None of the above

About how many prime factors does a typical integer n have?

(A) √n

(B) log(n) (C) ln(ln n)

(D) log(ln(ln n))

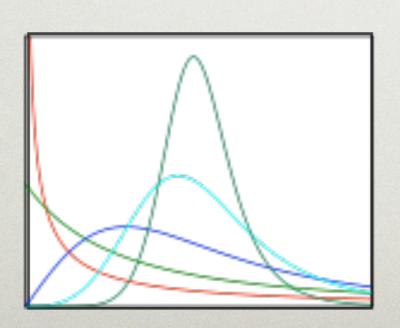
(E) None of the above

MOMENTS

kth central moment: E[(X-E[X])^k]

(1) expected value: E[X]
(2) variance: E[(X-E[X])²]
(3) skewness: E[(X-E[X])³]
(4) ...





THE FIRST MOMENT METHOD

Most previous techniques use First Moment Method

Basic Method:

(1) Define bad events **BAD**_i

(2) **BAD** := \cup_i **BAD**_i

(3) bound $\Pr[BADi] \le \delta$

(4) Compute # bad events ≤ m

(5) union bound:

$\Pr[\mathsf{BAD}] \le \mathsf{m}\delta < \mathbf{1}$

(6) ∴ **Pr[GOOD] > 0**

as First Moment Method:

THE FIRST MOMENT METHOD

Most previous techniques use First Moment Method

Basic Method:

- (1) Define bad events **BAD**_i
- (2) **BAD** := \cup_i **BAD**_i
- (3) bound $\Pr[BADi] \le \delta$
- (4) Compute # bad events ≤ m
- (5) union bound: **Pr[BAD]** $\leq m\delta < 1$
- (6) ∴ **Pr[GOOD] > 0**

as First Moment Method:

- (1) Z_i: indicator var for BAD_i
- (2) $Z := \sum_{i} Z_{i}$
- (3) $\mathbf{E}[\mathbf{Z}_i] = \mathbf{Pr}[\mathbf{BAD}_i] \le \delta$
- **m** (4) Compute # bad events \leq **m**
 - (5) $\mathbf{E}[\mathbf{Z}] = \mathbf{E}[\mathbf{Z}_i] \le \mathbf{m}\delta < 1$
 - (6) ∴ **Z** = **0 w/prob** > **0**

CLICKER QUESTION

- Let X,Y be fair coins. What is Cov[X,Y] when (i) X = Y(ii) X = 1-Y
- (A) (i) 1/4 (ii) -1/4
 (B) (i) 1/2 (ii) -1/2
 (C) (i) -1/4 (ii) 1/4
 (D) (i) 1/4 (ii) 1/4
 (E) (i) -1/2 (ii) -1/2

CLICKER QUESTION

- Let X,Y be fair coins. What is Cov[X,Y] when
 - (i) $\mathbf{X} = \mathbf{Y}$
 - (ii) X = 1 Y
- (A) (i) 1/4 (ii) -1/4
 - (B) (i) 1/2 (ii) -1/2
 - (C) (i) -1/4 (ii) 1/4

(E) (i) -1/2 (ii) -1/2

- (D) (i) 1/4 (ii) 1/4

MOST INTEGERS HAVE In(In(n)) PRIME FACTORS

Theorem: Let g(n) be a function growing arbitrarily slowly. Then, there are o(n) integers $x \le n$ such that

| ν (x) - ln(ln(n))| > g(n) √ln(ln(n))

MOST INTEGERS HAVE In(In(n)) PRIME FACTORS

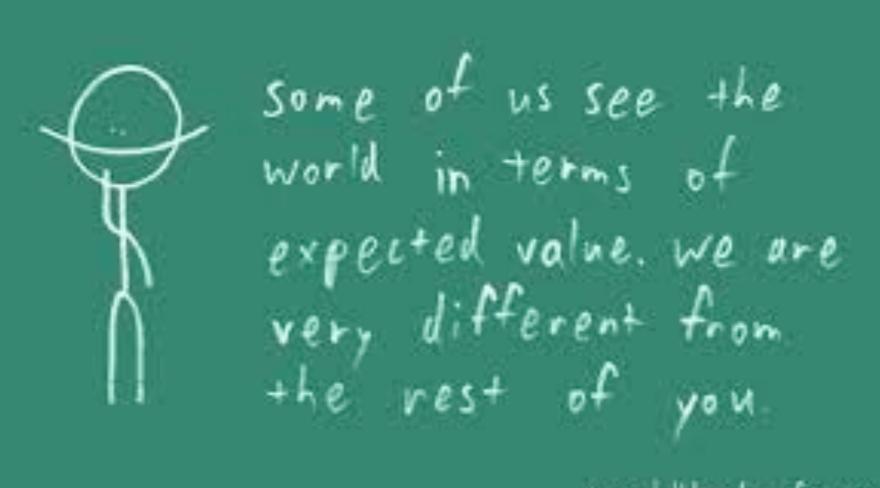
Theorem: Let g(n) be a function growing arbitrarily slowly. Then, there are o(n) integers $x \le n$ such that

| *ν* (x) - ln(ln(n))| > g(n) √ln(ln(n))

Proof:

- Take random $\mathbf{x} \in [\mathbf{n}]$
- Estimate # distinct primes dividing x
- Use Chebyshev to bound deviation.

THE PROBABILISTIC METHOD



www.chalkboordmansfesto com