THE PROBABILISTIC METHOD WEEK 7: ALTERATIONS

JOSHUA BRODY CS49/MATH59 FALL 2015

READING QUIZ

What is the alteration technique?

- (A) Generate GOOD object by choosing random object, then removing any badness "by hand"
- (B) Generate GOOD object by choosing random object, then showing BAD probability < 1
- (C) Generate GOOD object by choosing random object, then using Chernoff Bound
- (D) Choose edges of graph by alternating between red edges and blue edges
- (E) None of the above

READING QUIZ

What is the alteration technique?

(A) Generate GOOD object by choosing random object, then removing any badness "by hand"

- (B) Generate GOOD object by choosing random object, then showing BAD probability < 1
- (C) Generate GOOD object by choosing random object, then using Chernoff Bound
- (D) Choose edges of graph by alternating between red edges and blue edges
- (E) None of the above

RAMSEY THEORY

R(k,k) := smallest **n** such that for every two-coloring of **K**_n, there is red **K**_k subgraph or a blue **K**_k subgraph.

Basic Method: If
$$\binom{n}{k}_{2}^{\left\lfloor -\binom{k}{2} \right\rfloor} < 1$$
 then **R(k,k)** > **n**.

Alterations: $\mathbf{R}(\mathbf{k},\mathbf{k}) > \mathbf{n} - \binom{n}{k} 2^{1-\binom{k}{2}}$

RAMSEY THEORY

R(k,k) := smallest **n** such that for every two-coloring of **K**_n, there is red **K**_k subgraph or a blue **K**_k subgraph.

Basic Method: R(k,k) > (1+o(1)) k2^k/e₁/2

Alterations: R(k,k) > (1+o(1)) k2^k/e

Will alterations always give improvement over basic probabilistic method approach?

(A) Yes

(B) No

(C) Maybe

(D) None of the above

INDEPENDENT SETS

- Independent Set: set of vertices which share no edges
- **α(G):** size of largest independent set

INDEPENDENT SETS

- Independent Set: set of vertices which share no edges
- **α(G):** size of largest independent set

What is **E[Y]**?

- (A) E[Y] = (nd/2)*p
- (B) **E**[**Y**] = nd*p
- (C) $E[Y] = nd^*p^2$
- (D) $E[Y] = 2nd^*p^2$
- (E) None of the above

What is **E[Y]**?

- (A) E[Y] = (nd/2)*p
- (B) **E**[**Y**] = nd*p
- (C) $E[Y] = nd^*p^2$
- (D) $E[Y] = 2nd^*p^2$

(E) None of the above

MINIMIZING AREA

Let S be a set of n points on unit square [0,1]x[0,1]

 $T(S) := min_{P,Q,R \in S} area(PQR)$

T(n) := max_s T(S)

Theorem: $T(n) = \Omega(1/n^2)$

What is **E[#triangles w/area** $\leq 1/100n^2$]?

- (A) E[#small triangles] \leq (n choose 3)*16* Π /100n²
- (B) E[#small triangles] ≤ (n choose 3)/100n²
- (C) E[#small triangles] \leq (2n choose 3)*16*T/100n²
- (D) E[#small triangles] ≤ 2nd*p²
- (E) None of the above

What is **E[#triangles w/area** \leq **1/100n**²]?

(A) E[#small triangles] \leq (n choose 3)*16* Π /100n²

(B) E[#small triangles] \leq (n choose 3)/100n²

(C) E[#small triangles] \leq (2n choose 3)*16* Π /100n²

(D) E[#small triangles] \leq 2nd*p²

(E) None of the above

MINIMIZING AREA

Let S be a set of n points on unit square [0,1]x[0,1]

 $T(S) := min_{P,Q,R \in S} area(PQR)$

T(n) := max_s T(S)

Theorem: $T(n) = \Omega(1/n^2)$

THE PROBABILISTIC METHOD

www.chelkheardmassfeste com