THE PROBABILISTIC METHOD WEEK 7: ALTERATIONS

JOSHUA BRODY CS49/MATH59 FALL 2015

Which inequalities are valid?

- (1) $1/k! < (e/k)^k$
- (2) $\binom{n}{k} \leq \frac{n^k}{k!}$
- (3) $e^{ck} > l + ck$

- (A) (I) and (2)
- (B) (I) and (3)
- (C) (2) and (3)
- (D) All are valid
- (E) None of the above

Which inequalities are valid?

- (1) $1/k! < (e/k)^k$
- (2) $\binom{n}{k} \leq \frac{n^k}{k!}$
- (3) $e^{ck} > l + ck$

- (A) (I) and (2)
- (B) (I) and (3)
- (C) (2) and (3)
- (D) All are valid
 - (E) None of the above

What is **α(G)**?

- (A) clique number of G
- (B) independence number of G
- (C) chromatic number of G
- (D) size of the smallest cycle in G
- (E) None of the above

What is **α(G)**?

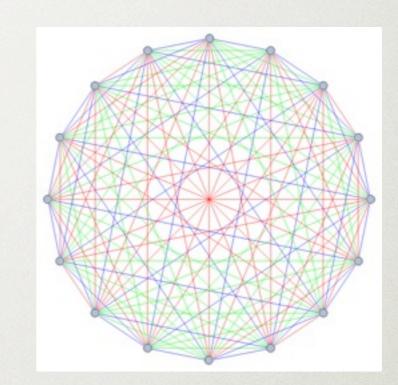
(A) clique number of G

(B) independence number of G

- (C) chromatic number of G
- (D) size of the smallest cycle in G
- (E) None of the above

THE PROBABILISTIC METHOD

- Define bad events {BADs}
- **BAD** := \cup **BAD**_s
- Compute **Pr[BADS]**
- Calculate **# S**

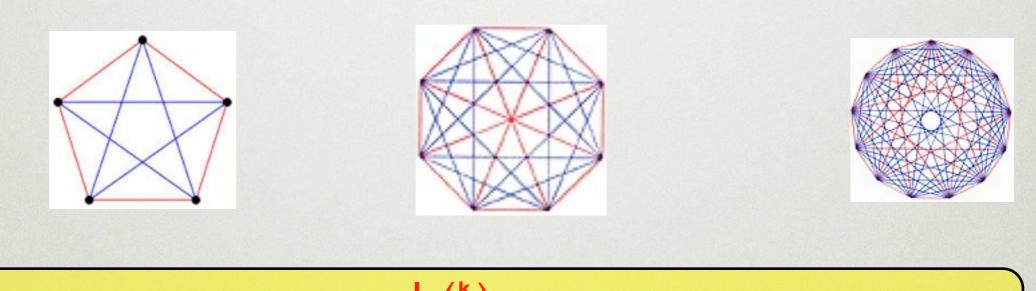


• Union Bound: $Pr[BAD] \leq (\#S)*Pr[BAD_s]$

If **Pr[BAD]** \leq 1 then bad events avoided with probability > 0

RAMSEY THEORY

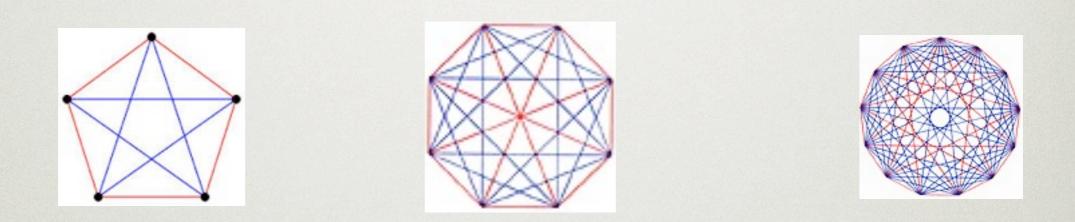
R(k,l) := smallest **n** such that for every two-coloring of **K**_n, there is red **K**_k subgraph or a blue **K**_l subgraph.



Basic Method: If $\binom{n}{k}_{2}^{\left\lfloor -\binom{k}{2} \right\rfloor} < \left\lfloor$ then **R(k,k)** > **n**.

RAMSEY THEORY

R(k,l) := smallest **n** such that for every two-coloring of **K**_n, there is red **K**_k subgraph or a blue **K**_l subgraph.

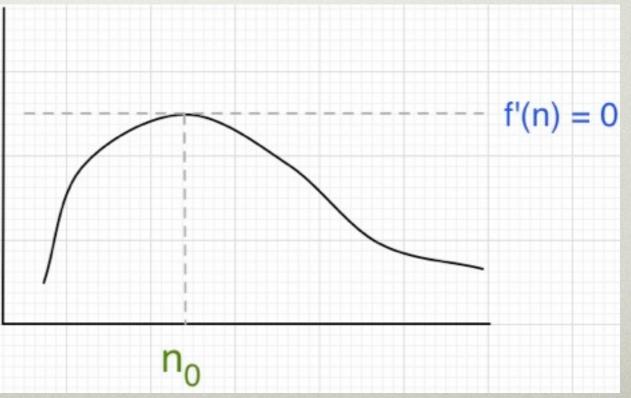


Basic Method: If
$$\binom{n}{k}_{2}^{\left\lfloor -\binom{k}{2} \right\rfloor} < 1$$
 then **R(k,k)** > **n**.

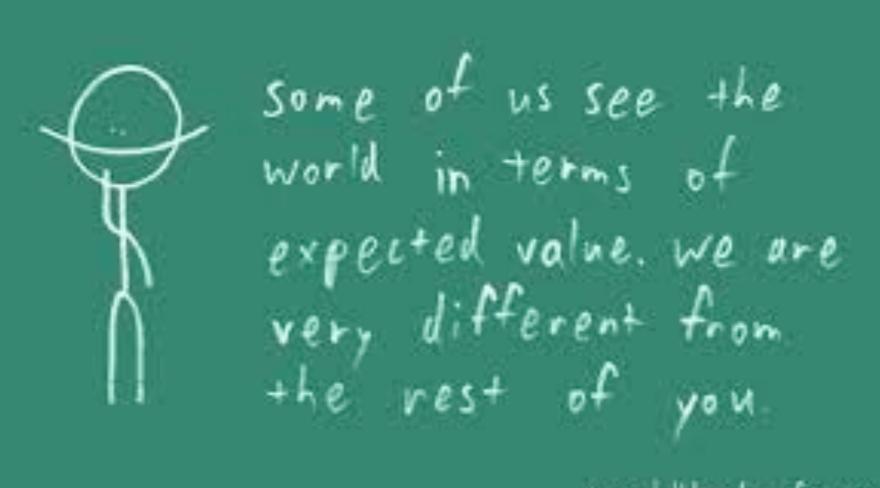
Alterations: $\mathbf{R}(\mathbf{k},\mathbf{k}) > \mathbf{n} - \binom{n}{k} 2^{1-\binom{k}{2}}$

MAXIMIZING F(N)

(1) Determine when slope of f(n) equals 0:
i.e. find n₀ so f'(n₀) = 0
(2) Compute second derivative f"(n)
(3) If f"(n₀) < 0 then f has local maximum at n₀
(4) Compute f(n₀)



THE PROBABILISTIC METHOD



www.chalkboordmansfesto com