THE PROBABILISTIC METHOD WEEK 5: LINEARITY OF EXPECTATION

JOSHUA BRODY CS49/MATH59 FALL 2015

CLICKER QUESTION

Let **P** be the uniform distribution on **Ω={0,1,2,3,4,5,6,7}**. Which of the following random variables are **not** uniform on **S={0,1,2,3,4,5,6,7}**?

- (A) $X_1(w) := w + 2 \pmod{8}$
- (B) $X_2(w) := w + 5 \pmod{8}$
- (C) $Y_1(w) := 2w \pmod{8}$
- (D) $Y_2(w) := 3w \pmod{8}$
- (E) None of the above (all are uniform on S)

CLICKER QUESTION

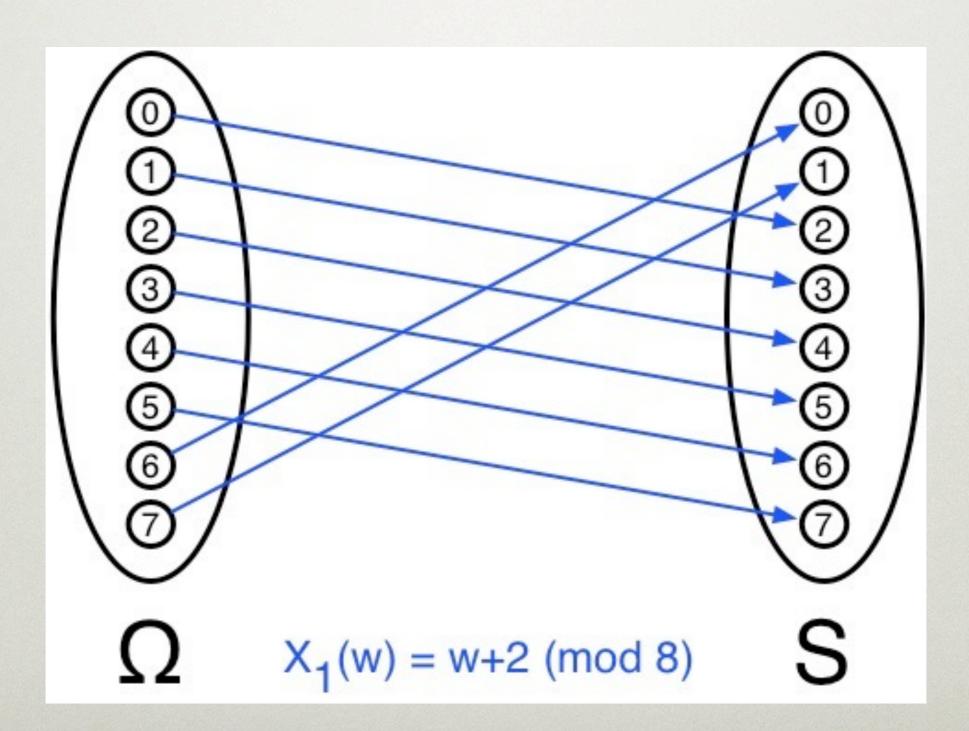
Let **P** be the uniform distribution on **Ω={0,1,2,3,4,5,6,7}**. Which of the following random variables are **not** uniform on **S={0,1,2,3,4,5,6,7}**?

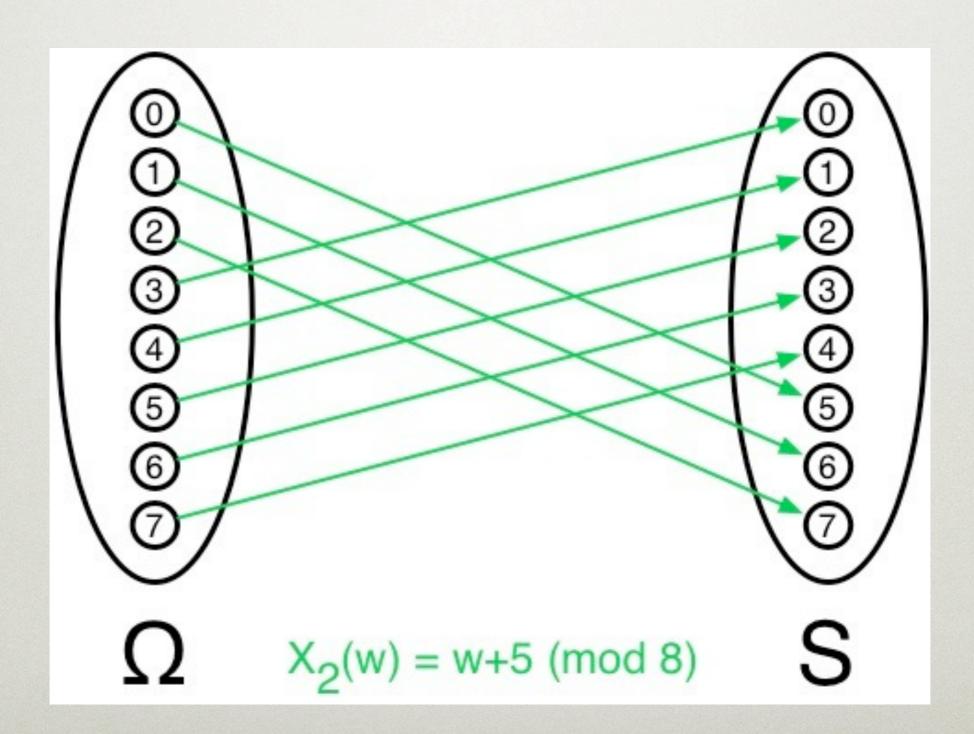
- (A) $X_1(w) := w + 2 \pmod{8}$
- (B) $X_2(w) := w + 5 \pmod{8}$

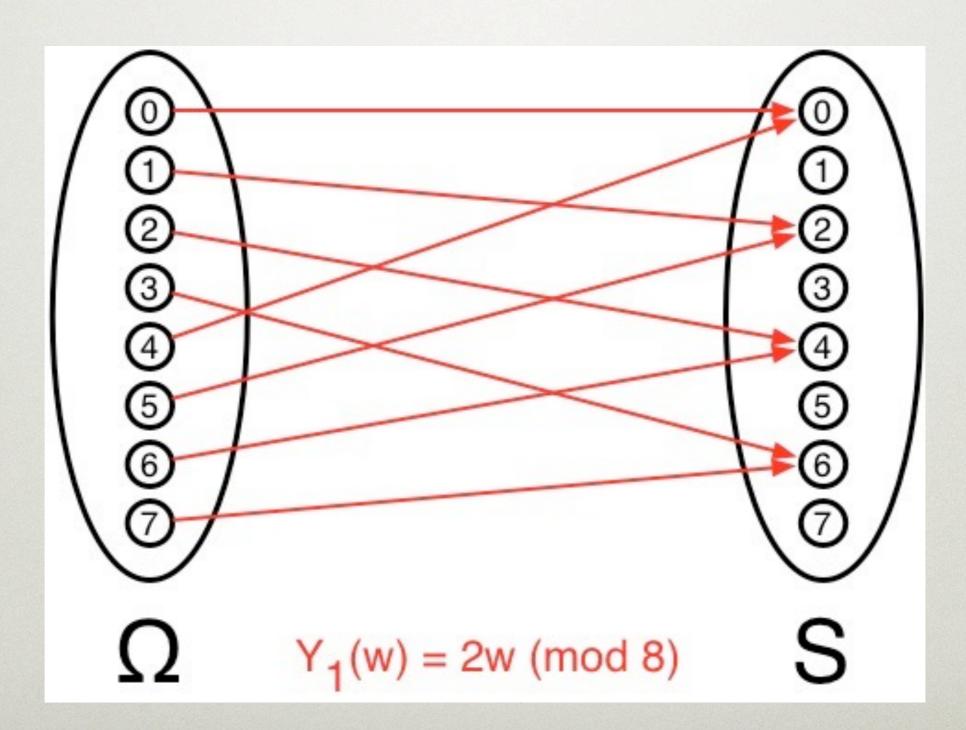
 $(C) Y_1(w) := 2w \pmod{8}$

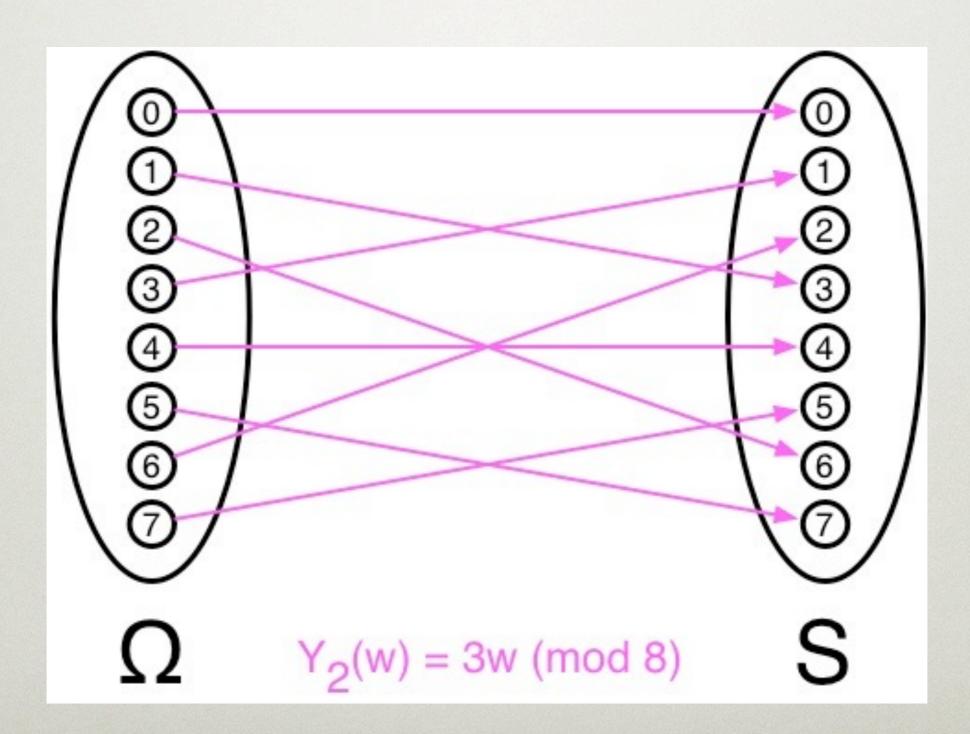
(D) $Y_2(w) := 3w \pmod{8}$

(E) None of the above (all are uniform on S)









A set of integers A is sum-free if there are no elements a_1 , a_2 , $a_3 \in A$ such that $a_1 + a_2 = a_3$.

sum-free:
 {1, 3, 8, 10, 12} {11, 15, 19, 23, 31}
not sum-free:

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.

example: integers mod m,

(m = 3k+2)

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size **> n/3**.

 example: integers mod m,
 (m = 3k+2)

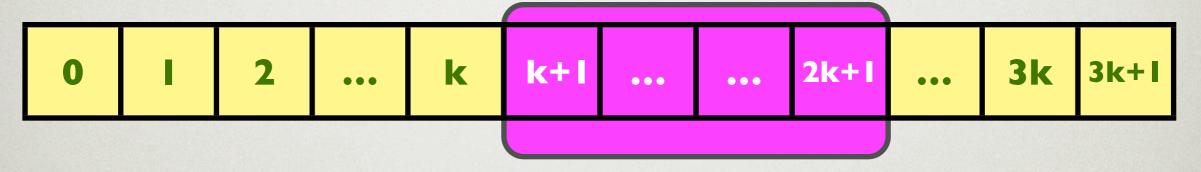
 0
 1
 2
 ...
 k
 k+1
 ...
 2k+1
 ...
 3k
 3k+1

 $C = \{k+1, ..., 2k+1\}$

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.

example: integers mod m,

(m = 3k+2)

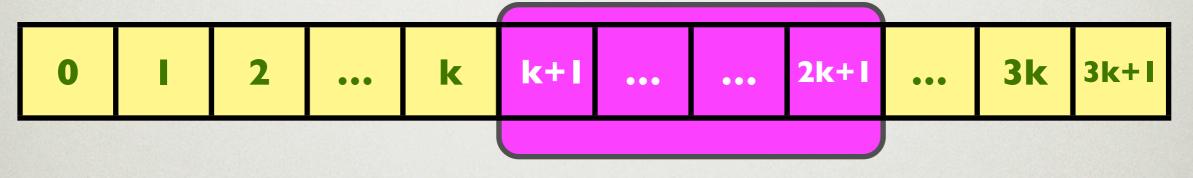


- $C = \{k+1, ..., 2k+1\}$
- $a_1 = (k+1) + i$
- $a_2 = (k+1) + j$

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size **> n/3**.

example: integers mod m,

(m = 3k+2)



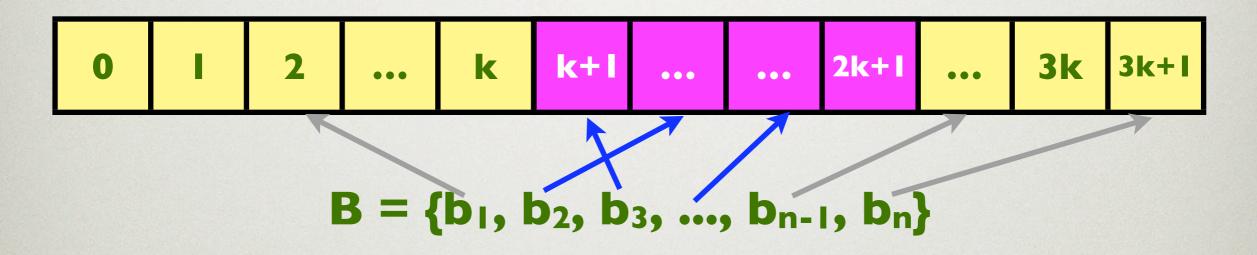
- $C = \{k+1, ..., 2k+1\}$
- $a_1 = (k+1) + i$
- $a_2 = (k+1) + j$
- $a_1 + a_2 \ge 2k + 2$, $a_1 + a_2 \le 4k + 2 \equiv k \pmod{3k + 2}$

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.

0	I	2	•••	k	k+l	•••	•••	2k+1	•••	3k	3k+l	
---	---	---	-----	---	-----	-----	-----	------	-----	----	------	--

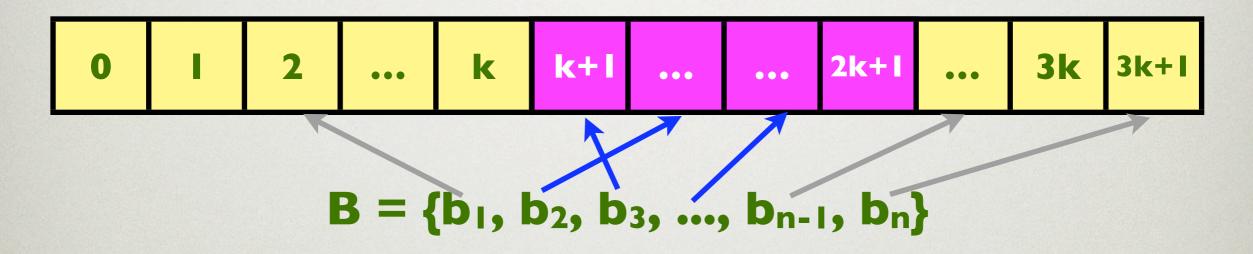
 $B = \{b_1, b_2, b_3, ..., b_{n-1}, b_n\}$

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.



 $A = \{b_i \in B : b_i \pmod{m} \text{ is in } C\}$

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.



 $A = \{b_i \in B : b_i \pmod{m} \text{ is in } C\}$

• good news: A is sum-free!

CLICKER QUESTION

- $C = \{k+1, ..., 2k+1\}$ $A = \{b_i \in B : b_i \pmod{m} \text{ is in } C\}.$ What is |A|?
- (A) |A| = n/3
- (B) |A| = (k+1)/(3k+2)
- (C) |A| > n/2
- (D)|A| = 0
- (E) Multiple answers possible

CLICKER QUESTION

- $C = \{k+1, ..., 2k+1\}$ $A = \{b_i \in B : b_i \pmod{m} \text{ is in } C\}.$ What is |A|?
- (A) |A| = n/3
- (B) |A| = (k+1)/(3k+2)
- (C) |A| > n/2
- (D)|A| = 0

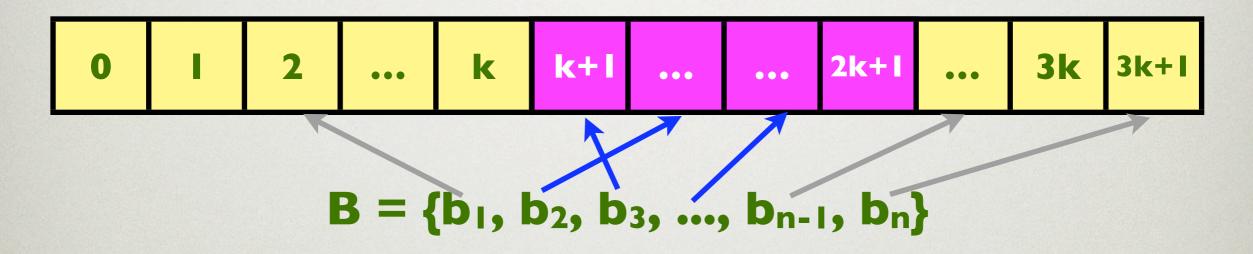
(E) Multiple answers possible

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.

0	I	2	•••	k	k+l	•••	•••	2k+1	•••	3k	3k+l	
---	---	---	-----	---	-----	-----	-----	------	-----	----	------	--

 $B = \{b_1, b_2, b_3, ..., b_{n-1}, b_n\}$

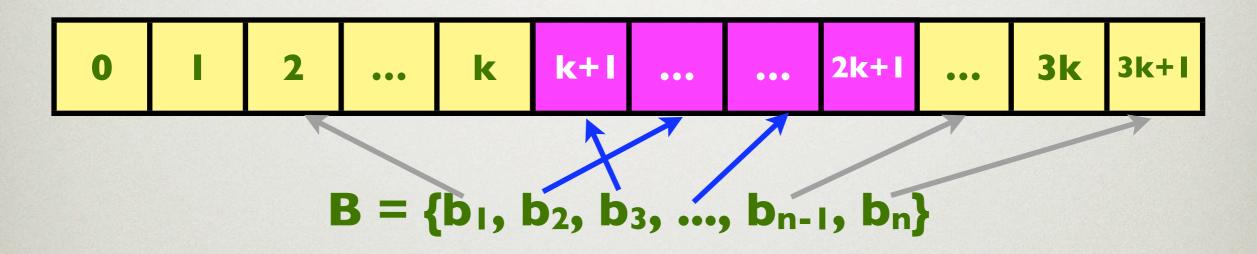
Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.



 $A = \{b_i \in B : b_i \pmod{m} \text{ is in } C\}$

• good news: A is sum-free!

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.



$A = \{b_i \in B : b_i \pmod{m} \text{ is in } C\}$

• good news: A is sum-free!

• bad news: maybe |A| = 0

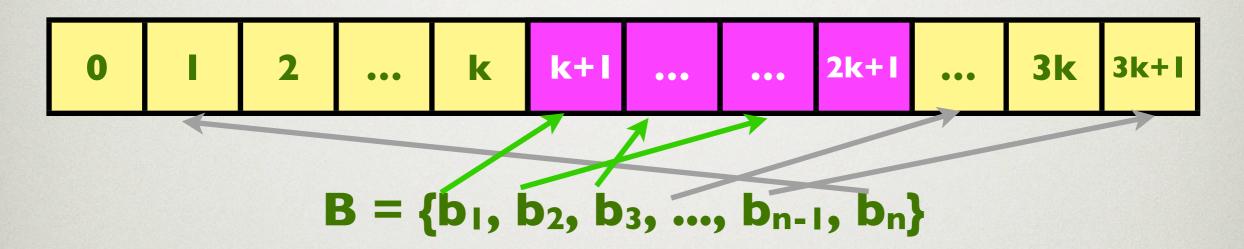
(ex. **B={m,2m,3m,...}**)

idea: shift by random 0 ≤ R < m

0 1	2	•••	k	k+l	•••	•••	2k+1	•••	3k	3k+l
-----	---	-----	---	-----	-----	-----	------	-----	----	------

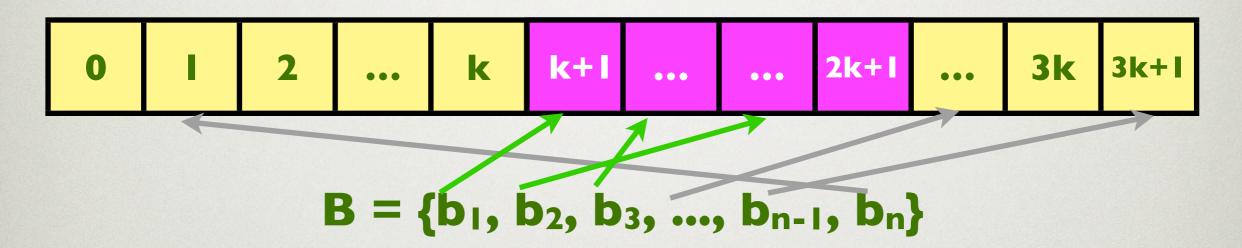
 $B = \{b_1, b_2, b_3, ..., b_{n-1}, b_n\}$

idea: shift by random 0 ≤ R < m



 $A = \{b_i \in B : b_i + R \pmod{m} \text{ is in } C\}$

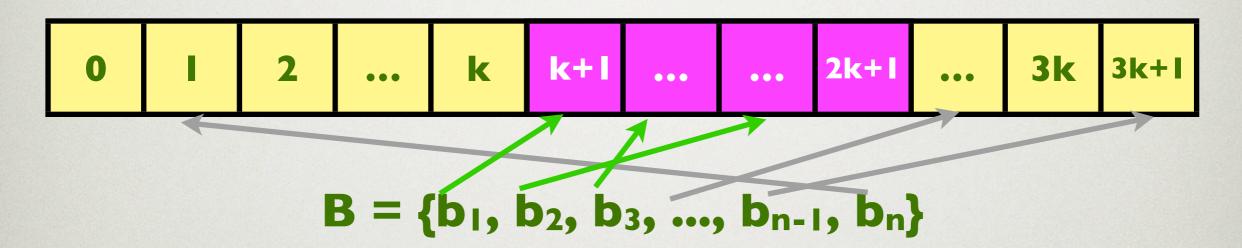
idea: shift by random 0 ≤ R < m



 $A = \{b_i \in B : b_i + R \pmod{m} \text{ is in } C\}$

• good news: **E[|A|] > n/3**

idea: shift by random 0 ≤ R < m



 $A = \{b_i \in B : b_i + R \pmod{m} \text{ is in } C\}$

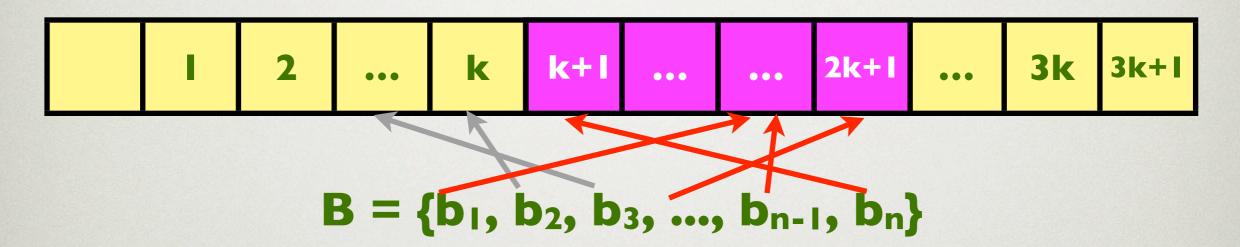
- good news: **E[|A|] > n/3**
- bad news: A not always sum-free

idea: multiply by random $| \leq \mathbf{R} < \mathbf{m}$

	I	2	•••	k	k+l	•••	•••	2k+1	•••	3k	3k+l
--	---	---	-----	---	-----	-----	-----	------	-----	----	------

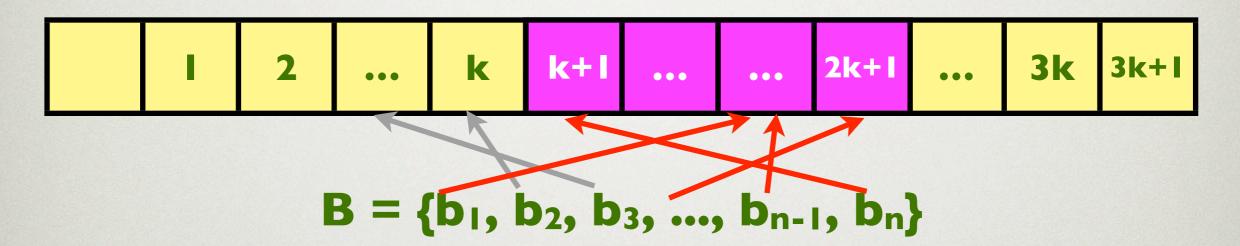
 $B = \{b_1, b_2, b_3, ..., b_{n-1}, b_n\}$

idea: multiply by random $I \leq R < m$



 $A = \{b_i \in B : b_i R \pmod{m} \text{ is in } C\}$

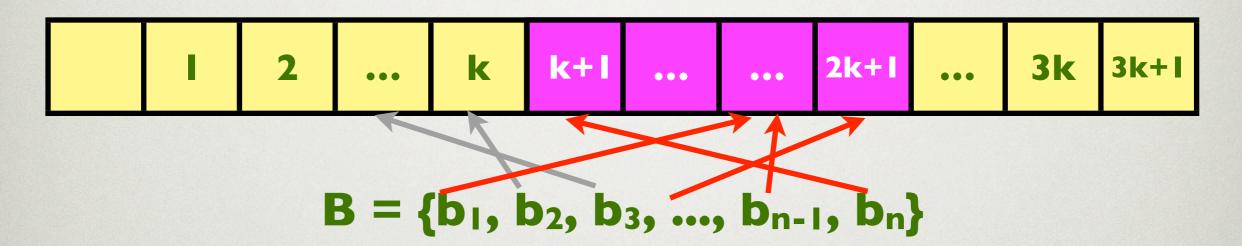
idea: multiply by random $I \leq R < m$



 $A = \{b_i \in B : b_i * R \pmod{m} \text{ is in } C\}$

• good news: **E[|A|] > n/3**

idea: multiply by random $I \leq R < m$



 $A = \{b_i \in B : b_i * R \pmod{m} \text{ is in } C\}$

• good news: **E[|A|] > n/3**

• more good news: A sum-free!

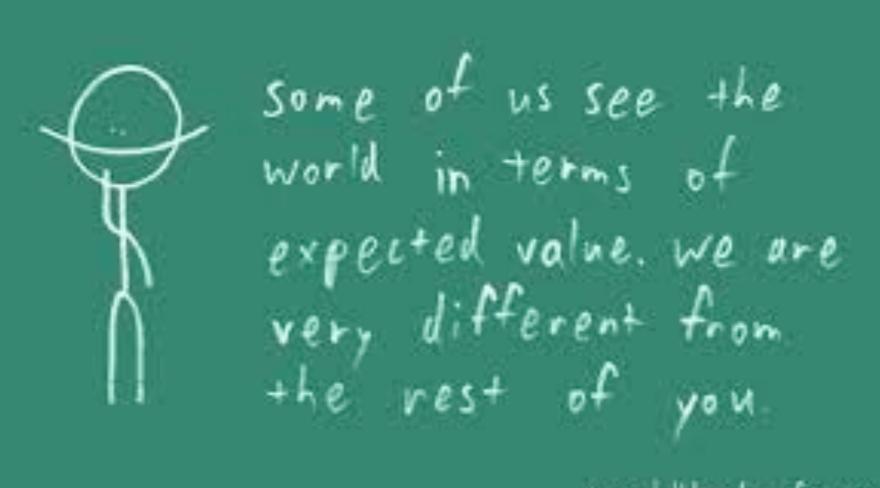
SOLUTION

Theorem: every set **B** of **n** nonzero integers has a sum-free subset **A** of size > **n/3**.

proof:

- pick large prime **p = 3k+2** s.t. **p > 2max|b**_i|
- sample uniform element $R \in \{1, ..., p-1\}$
- •C := {k+1, ..., 2k+1}
- A := $\{b_i : b_i R \pmod{p} \in C\}$
- Fact 1: **E[|A|] > n/3**
- Fact 2: A is sum-free.

THE PROBABILISTIC METHOD



www.chalkboordmansfesto com