THE PROBABILISTIC METHOD WEEK 5: LINEARITY OF EXPECTATION

JOSHUA BRODY CS49/MATH59 FALL 2015

READING QUIZ

X be a real-valued random variable. What is **E**[**X**]?

- (A) $E[X] = \sum_{w \in \Omega} X(w) Pr[w]$
- (B) $E[X] = \sum_{s \in S} sPr[X = s]$
- (C) $E[X] = (I/\Omega) \sum_{w \in \Omega} Pr[w]$
- **(D) Multiple answers correct**
- (E) None of the above

READING QUIZ

X be a real-valued random variable. What is **E**[**X**]?

- (A) $E[X] = \sum_{w \in \Omega} X(w) Pr[w]$
- (B) $E[X] = \sum_{s \in S} sPr[X = s]$
- (C) $E[X] = (I/\Omega) \sum_{w \in \Omega} Pr[w]$

(D) Multiple answers correct

(E) None of the above

EXPECTED VALUE

Definition: If $X : \Omega \rightarrow S$ is a real-valued random variable, then its expected value is

$\mathbf{E}[\mathbf{X}] = \sum_{\mathbf{w} \in \Omega} \mathbf{X}(\mathbf{w}) \mathbf{Pr}[\mathbf{w}]$

CLICKER QUESTION

Let **X** be a fair six-sided die. What is **E**[**X**²]?

- (A) $E[X^2] = 7$
- (B) $E[X^2] = 28/3$
- (C) $E[X^2] = 49/4$
- (D) $E[X^2] = 91/6$
- (E) None of the above

CLICKER QUESTION

Let **X** be a fair six-sided die. What is **E**[**X**²]?

(A) E[X²] = 7
(B) E[X²] = 28/3
(C) E[X²] = 49/4
(D) E[X²] = 91/6
(E) None of the above

LINEARITY OF EXPECTATION

Problem: 300 students took an exam for CS21. There were 8 problems to solve. Each problem was correctly solved by at least 200 students. Show that there are two students who between them answered all questions correctly.

A set of integers A is sum-free if there are no elements a_1 , a_2 , $a_3 \in A$ such that $a_1 + a_2 = a_3$.

sum-free:
 {1, 3, 8, 10, 12} {11, 15, 19, 23, 31}
not sum-free:

{I, 2, 4, 6, I, 1, 1, 1, 1, 1, 1, 1,,1, 1,

Theorem: every set of **n** nonzero integers has a sumfree subset of size > n/3.

example: integers mod m

0	Т	2	•••	<u>m</u> 3	$\frac{m}{3} + I$	•••	•••	2m 3	•••	m-2	m-I
---	---	---	-----	---------------	-------------------	-----	-----	---------	-----	------------	-----

Theorem: every set of **n** nonzero integers has a sumfree subset of size > n/3.

example: integers mod m

 $A = \{m/3+1, ..., 2m/3\}$

Theorem: every set of **n** nonzero integers has a sumfree subset of size > n/3.

example: integers mod m

- $A = \{m/3+1, ..., 2m/3\}$
- $a_1 = m/3 + i$
- $a_2 = m/3 + j$

Theorem: every set of **n** nonzero integers has a sumfree subset of size > n/3.

example: integers mod m

- $A = \{m/3+1, ..., 2m/3\}$
- $a_1 = m/3 + i$
- $a_2 = m/3 + j$
- $a_1+a_2 > 2m/3$, $a_1+a_2 \le m/3$

THE PROBABILISTIC METHOD

www.chelkheardmassfeste com