THE PROBABILISTIC METHOD WEEK 4: THE BASIC METHOD

JOSHUA BRODY CS49/MATH59 FALL 2015

images source: wikipedia, google

What does it mean for a tournament to have property **S**_k?

- (A) There is a set of k players that beat all other players.
- (B) For any set of k players, there is one player that beats them all.
- (C) There is a set of k players that are all beaten by one player.
- (D) For any set of k players, there is a player beaten by all of them

What does it mean for a tournament to have property **S**_k?

(A) There is a set of k players that beat all other players.

(B) For any set of k players, there is one player that beats them all.

(C) There is a set of k players that are all beaten by one player.

(D) For any set of k players, there is a player beaten by all of them

Which of the following sets are sum-free?

- (A) $A = \{1, 2, 4, 6\}$
- (B) $B = \{17, 19, 35, 47, 101\}$
- (C) $C = \{-14, 22, 57, 71\}$
- (D) multiple answers correct
- (E) no answers correct

Which of the following sets are sum-free?

(A)
$$A = \{1, 2, 4, 6\}$$

(B) $B = \{17, 19, 35, 47, 101\}$

(C) $C = \{-14, 22, 57, 71\}$

(D) multiple answers correct

(E) no answers correct

TOURNAMENTS

Definition: A tournament on **n** players is an **orientation** of **K**_n

(u,v) directed edge: "u beats v"

Definition: T has property **S**_k if every set of **k** vertices there is another vertex that beats them all.

Definition: T has property **S**_k if every set of **k** vertices there is another vertex that beats them all.

Question: Are there always tournaments w/S_k ?

Theorem: If $\binom{n}{k}(I-2^{-k})^{n-k} < I$ then there is a tournament on n vertices with property S_k .

Theorem: If $\binom{n}{k}(I-2^{-k})^{n-k} < I$ then there is a tournament on n vertices with property S_k .

Proof:

• Choose random tournament on **n** vertices.

• each edge $\mathbf{u} \rightarrow \mathbf{v}$ or $\mathbf{v} \rightarrow \mathbf{u}$ independently $\mathbf{w/prob} \ \mathbf{I/2}$.

Theorem: If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$ then there is a tournament on n vertices with property S_k .

Proof:

• Choose random tournament on **n** vertices.

• each edge $\mathbf{u} \rightarrow \mathbf{v}$ or $\mathbf{v} \rightarrow \mathbf{u}$ independently $\mathbf{w}/\mathbf{prob} \mathbf{I}/2$.

• BAD_K: event set of vertices K not dominated by another vertex

Theorem: If $\binom{n}{k}(I-2^{-k})^{n-k} < I$ then there is a tournament on n vertices with property S_k .

Proof:

• Choose random tournament on **n** vertices.

• each edge $\mathbf{u} \rightarrow \mathbf{v}$ or $\mathbf{v} \rightarrow \mathbf{u}$ independently $\mathbf{w}/\mathbf{prob} | /2$.

• **BAD**_K: event set of vertices **K** not dominated by another vertex

• BAD := \cup_{K} BAD_K;

• GOOD:= ¬BAD

What is the probability that a set of **k** vertices does not get dominated?

(A) **2**-k

(B) **(I-2^{-k})**

(C) **2^{-k(n-k)}**

(D) multiple answers possible

(E) none of the above

What is the probability that a set of **k** vertices does not get dominated?

(A) **2**-k

(B) **(I-2^{-k})**

(C) **2^{-k(n-k)}**

(D) multiple answers possible

Theorem: If $\binom{n}{k}(I-2^{-k})^{n-k} < I$ then there is a tournament on n vertices with property S_k .

Theorem: If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$ then there is a tournament on n vertices with property S_k .

Proof:

• Choose random tournament on **n** vertices.

• each edge $\mathbf{u} \rightarrow \mathbf{v}$ or $\mathbf{v} \rightarrow \mathbf{u}$ independently $\mathbf{w}/\mathbf{prob} | /2$.

• BAD_K: event set of vertices K not dominated by another vertex

• BAD := \cup_K BAD_K; GOOD := \neg BAD

Theorem: If $\binom{n}{k}(I-2^{-k})^{n-k} < I$ then there is a tournament on n vertices with property S_k .

Proof:

• Choose random tournament on **n** vertices.

• each edge $\mathbf{u} \rightarrow \mathbf{v}$ or $\mathbf{v} \rightarrow \mathbf{u}$ independently $\mathbf{w}/\mathbf{prob} | /2$.

• BAD_K: event set of vertices K not dominated by another vertex

- BAD := \cup_K BAD_K; GOOD := \neg BAD
- $\Pr[BAD_k] = (1-2^{-k})^{n-k}$

•# k vertex subsets: (ⁿ_k)

Theorem: If (")(I-2-^k)^{n-k} < I then there is a tournament on n vertices with property S_k.

Proof:

Choose random tournament on n vertices.

• each edge $\mathbf{u} \rightarrow \mathbf{v}$ or $\mathbf{v} \rightarrow \mathbf{u}$ independently w/prob 1/2.

• **BAD**_K: event set of vertices **K** not dominated by another vertex

• BAD := \cup_K BAD_K; GOOD := \neg BAD

• $\Pr[BAD_k] = (1-2^{-k})^{n-k}$ union bound: $\Pr[BAD] \leq \binom{n}{k} (1-2^{-k})^{n-k}$

•# k vertex subsets: (ⁿ_k)

THE PROBABILISTIC METHOD

