THE PROBABILISTIC METHOD WEEK 4: THE BASIC METHOD

JOSHUA BRODY CS49/MATH59 FALL 2015

images source: wikipedia, google

ASYMPTOTICS RECAP

Exponent Rule: If $g(n) = f(n) + \omega(1)$, then $2^{f(n)} = o(2^{g(n)})$

ASYMPTOTICS RECAP

Exponent Rule: If $g(n) = f(n) + \omega(1)$, then $2^{f(n)} = o(2^{g(n)})$

Comparing Functions with Different Bases: (1) Convert to common base using e.g. **a** = 2^{log(a)} (2) Use Exponent Rule

What is **K**_n?

- (A) A complete graph on n vertices
- (B) An independent set on n vertices
- (C) A complete graph with n edges
- (D) A clique with n edges
- (E) Multiple answers correct

What is **K**_n?

(A) A complete graph on n vertices

- (B) An independent set on n vertices
- (C) A complete graph with n edges
- (D) A clique with n edges
- (E) Multiple answers correct

What is **R(k,l)**?

- (A) The least n such that it is possible to color edges of K_n red or blue so that there is a red clique w/k vertices and a blue clique with *l* vertices.
- (B) The least n such that no matter how edges of K_n are two-colored, there is a red clique w/k-vertices and a blue clique w/l vertices.
- (C) The least n such that no matter how edges of K_n are two-colored, there is a red clique w/k-vertices or a blue clique w/l vertices.
- (D) The greatest n such that there is a two-coloring of K_n with no k-vertex red clique and no *l*-vertex blue clique.
- (E) Multiple answers correct.

What is **R(k,l)**?

- (A) The least n such that it is possible to color edges of K_n red or blue so that there is a red clique w/k vertices and a blue clique with *l* vertices.
- (B) The least n such that no matter how edges of K_n are two-colored, there is a red clique w/k-vertices and a blue clique w/l vertices.

(C) The least n such that no matter how edges of K_n are two-colored, there is a red clique w/k-vertices or a blue clique w/l vertices.

(D) The greatest n such that there is a two-coloring of K_n with no k-vertex red clique and no *l*-vertex blue clique.

(E) Multiple answers correct.

RAMSEY THEORY

Definition: **R(k,I)** = smallest **n** such that for every two-coloring of **K**_n, there is red **K**_k subgraph or a blue **K**_l subgraph.

RAMSEY THEORY

Definition: **R(k,l)** = smallest **n** such that for every two-coloring of **K**_n, there is red **K**_k subgraph or a blue **K**_l subgraph.

Ramsey's Theorem

[Ramsey '29]

R(k,l) is finite for all **k,l**.

RAMSEY THEORY EXTENSIONS

- R(k₁,k₂,...,k_t): smallest n so that in any tcoloring of edges of K_n, either there is a red clique of size k₁, a blue clique of size k₂, a purple clique of size k₃, ...
- R(G₁,G₂,...,G_t): smallest n so that any tcoloring of edges of K_n contains an all-red copy of G₁ or all-blue copy of G₂, or...
- Integers: for all k ≥ 2, there is n>3 s.t. in any k-coloring of {1, ..., n}, there are x,y,z all same color where x+y=z.
- also: hypergraphs, Van der Waerden numbers, ...

APPLICATIONS

Theoretical Computer Science:

- communication complexity
- information theory
- computational complexity

Algorithms:

- parallel computation
- testing graph properties
- matrix multiplication
- computational geometry
- data structures

- Mathematics:
 - number theory
 - algebra
 - topology
 - logic
 - geometry

Theorem: If $\binom{n}{k} 2^{\left|-\binom{k}{2}\right|} < I$ then **R(k,k)** > **n**.

Theorem: If $\binom{n}{k} 2^{\left|-\binom{k}{2}\right|} < I$ then **R(k,k) > n**.

Proof:

• Choose random 2-coloring of K_n

Theorem: If $\binom{n}{k} 2^{\left\lfloor -\binom{k}{2} \right\rfloor} < 1$ then **R(k,k)** > **n**.

Proof:

- Choose random 2-coloring of K_n
- BAD_S: event that edges between vertices in S are monochromatic
- BAD := Us BADs; GOOD:= ¬BAD

Theorem: If $\binom{n}{k} 2^{\left\lfloor -\binom{k}{2} \right\rfloor} < \left\lfloor$ then **R(k,k)** > **n**.

Proof:

- Choose random 2-coloring of K_n
- BAD_S: event that edges between vertices in S are monochromatic
- BAD := \cup_s BADs; GOOD:= \neg BAD • Pr[BADs] = $2^{|-\binom{k}{2}}$

• # k vertex subsets S: (ⁿ_k)

Theorem: If $\binom{n}{k} 2^{\left\lfloor -\binom{k}{2} \right\rfloor} < \left\lfloor$ then **R(k,k)** > **n**.

Proof:

- Choose random 2-coloring of K_n
- BAD_S: event that edges between vertices in S are monochromatic
- BAD := Us BADs; GOOD:= ¬BAD
- Pr[BADs] = $2^{|-\binom{k}{2}|}$
- # k vertex subsets S: (")
- Union Bound: $\Pr[BAD] < \binom{n}{k} 2^{\left\lfloor -\binom{k}{2} \right\rfloor} < 1$
- **Pr[GOOD]** = **I**-**Pr[BAD]** > 0

CURRENT BOUNDS FOR R(K,L)

k,l	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10
3	3	6	9	14	18	23	28	36	40-42
4	4	9	18	25	36-41	49-61	58-84	73-115	92-149
5	5	14	25	43-49	58-87	80-143	101-216	126-316	144-442
6	6	18	36-41	58-87	102-165	113-298	132-495	169-780	179-1171
7	7	23	49-61	80-143	113-298	205-540	217-1031	241-1713	289-2826
8	8	28	58-84	101-216	132-495	217-1031	282-1870	317-3583	331-6090
9	9	36	73-115	126-316	169-780	241-1713	317-3583	565-6588	581-12677
10	10	40-42	92-149	144-442	179-1171	289-2826	331-6090	581-12677	798-23556

source: [Radziszowski14], wikipedia

THE PROBABILISTIC METHOD

