#### THE PROBABILISTIC METHOD

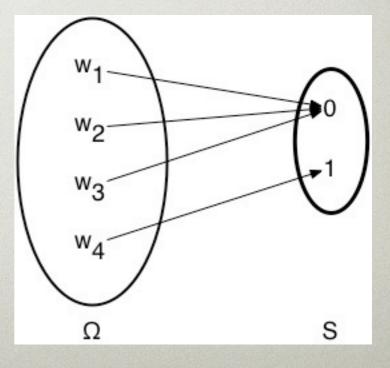
#### WEEK 2: INDEPENDENCE, RANDOM VARIABLES, Asymptopia



JOSHUA BRODY CS49/MATH59 FALL 2015

Let **P** be a probability distribution on  $\Omega$ . A random variable **X** is a function **X** :  $\Omega \rightarrow S$ .

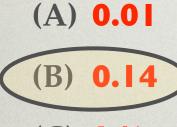
- "X = s" is the event { $w \in \Omega : X(w) = s$ }
- $P[X=s] = \sum_{w: X(w) = s} P(w)$
- distribution Px of X: Px(s) = P[X=s]
- X is real-valued if  $S \subseteq \mathbb{R}$



Let **P** be uniform on  $\Omega = \{1, 2, ..., 100\}$ . Define random variable **X** by **X(w) = w (mod 7)** What is **P<sub>x</sub>(4)**?

- (A) **0.0**
- (B) **0.14**
- (C) **I/6**
- (D) **1/7**
- (E) none of the above

Let **P** be uniform on  $\Omega = \{1, 2, ..., 100\}$ . Define random variable **X** by **X(w) = w (mod 7)** What is **P<sub>x</sub>(4)**?



(C) **I**/6

(D) **1/7** 

(E) none of the above

A pollster wants to know demographic information about residents of Swarthmore.

A pollster wants to know demographic information about residents of Swarthmore.

- Ω = {residents of Swarthmore}
- P : uniform on  $\Omega$

(or uniform over people w/phones who pick up between 5-7PM)

A pollster wants to know demographic information about residents of Swarthmore.

### • Ω = {residents of Swarthmore}

### • P : uniform on $\Omega$

(or uniform over people w/phones who pick up between 5-7PM)

- X<sub>1</sub>(w) = age of resident w
- $X_2(w)$  = income of w
- X<sub>3</sub>(w) = education of w
- X<sub>4</sub>(w) = political party of w

A pollster wants to know demographic information about residents of Swarthmore.

### • Ω = {residents of Swarthmore}

### • P : uniform on $\Omega$

(or uniform over people w/phones who pick up between 5-7PM)

- X<sub>1</sub>(w) = age of resident w
- $X_2(w)$  = income of w
- X<sub>3</sub>(w) = education of w
- X<sub>4</sub>(w) = political party of w

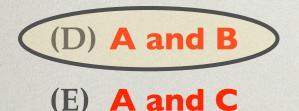
How are these random variables *related*?

Let X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> be fair coins. In which of the following circumstances are X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> 2-wise independent?

- (A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> mutually independent.
- (B)  $X_1$ ,  $X_2$  independent;  $X_3 = X_1 \oplus X_2$
- (C)  $X_3 = X_1$  w/prob 1/3,  $X_3 = X_2$  w/prob 2/3
- (D) A and B
- (E) A and C

Let X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> be fair coins. In which of the following circumstances are X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> 2-wise independent?

- (A) X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> mutually independent.
- (B)  $X_1$ ,  $X_2$  independent;  $X_3 = X_1 \oplus X_2$
- (C)  $X_3 = X_1$  w/prob 1/3,  $X_3 = X_2$  w/prob 2/3



#### THE PROBABILISTIC METHOD

