The Probabilistic Method

Week 13: P, NP, SAT

Joshua Brody
CS49/Math59
Fall 2015
Which of the following languages are known to be in P?

(A) THREE-COLOR = \{G = (V,E): G can be colored using three colors so that no edge is monochromatic\}

(B) BIPARTITE = \{G = (V,E): G is bipartite\}

(C) PRIMES = \{integers n: n is a prime number\}

(D) FACTORING = \{(n,k) : n has factor d s.t. 1 < d < k\}

(E) Multiple Answers Correct
QUIZ

Which of the following languages are known to be in P?

(A) THREE-COLOR = \{G = (V,E): G can be colored using three colors so that no edge is monochromatic\}

(B) BIPARTITE = \{G = (V,E): G is bipartite\}

(C) PRIMES = \{integers n: n is a prime number\}

(D) FACTORING = \{(n,k): n has factor d s.t. 1 < d < k\}

(E) Multiple Answers Correct
Clicker Question

Give a representation of two arbitrarily large integers \((n,k)\) as a single bit string.
Give a representation of two arbitrarily large integers \((n,k)\) as a single bit string.

How many bits are in the representation? (ignore ceiling function)

(A) \(\log(n) + \log(k)\)
(B) \(\max[\log(n), \log(k)]\)
(C) \(3\log(nk)\)
(D) \(2\max[\log(n), \log(k)]\)
(E) None of the above
Give a representation of two arbitrarily large integers \((n,k)\) as a single bit string.

How many bits are in the representation? \((\text{ignore ceiling function})\)

(A) \(\log(n) + \log(k)\)

(B) \(\max[\ \log(n), \log(k)\]\)

(C) \(3\log(nk)\)

(D) \(2\max[\ \log(n), \log(k)\]\) \(\text{(other answers possible)}\)

(E) None of the above
Polynomial Time Verifiers

V is an *efficient verifier* for a decision problem L if:

1. V is a polynomial time algorithm that takes two inputs: x and w
2. x ∈ L iff there is w such that \(\text{length}(w) = \text{length}(x)^{O(1)} \) and \(V(x, w) = \text{YES} \)
Polynomial Time Verifiers

V is an efficient verifier for a decision problem **L** if:

1. **V** is a polynomial time algorithm that takes two inputs: **x** and **w**
2. \(x \in L \) iff there is **w** such that \(\text{length}(w) = \text{length}(x)^{O(1)} \) and \(V(x,w) = \text{YES} \)

NP: = set of languages verifiable in polynomial time
Hard Problems?

Problems for which no polytime algorithm is known:

• **INDEPENDENT-SET**: Given $G = (V,E)$ and integer k, is there an *independent set* of size at least k?

• **VERTEX-COVER**: Given $G = (V,E)$ and integer k, is there a *vertex cover* of size at most k?

• **FACTORING**: Given integers (n,k), does n have a factor $1 < d < k$?

• **SUBSET-SUM**: Given set of integers $A = \{a_1, a_2, ..., a_n\}$ is there a *subset* $S \subseteq A$ that *sums to zero*?
Clicker Question

Consider the following SAT instance: \(c_1 \land c_2 \land c_3 \land c_4 \)
for the following clauses:

\[
\begin{align*}
 c_1 &= (x_1 \lor x_2 \lor \neg x_3) \\
 c_2 &= (\neg x_1 \lor x_3 \lor x_4) \\
 c_3 &= (\neg x_2 \lor \neg x_3 \lor \neg x_4) \\
 c_4 &= (x_2 \lor \neg x_3 \lor x_4)
\end{align*}
\]

Which of the following are satisfying assignments?

(A) \((x_1, x_2, x_3, x_4) = (F, F, F, F)\)

(B) \((T, T, T, T)\)

(C) \((T, F, T, F)\)

(D) \((F, T, F, F)\)

(E) Multiple Answers Correct
Clicker Question

Consider the following SAT instance: \(c_1 \land c_2 \land c_3 \land c_4 \)
for the following clauses:

\[

c_1 = (x_1 \lor x_2 \lor \neg x_3) \quad c_2 = (\neg x_1 \lor x_3 \lor x_4) \\

\[

\quad c_3 = (\neg x_2 \lor \neg x_3 \lor \neg x_4) \quad c_4 = (x_2 \lor \neg x_3 \lor x_4)
\]

Which of the following are satisfying assignments?

(A) \((x_1, x_2, x_3, x_4) = (F, F, F, F) \)

(B) \((T, T, T, T) \)

(C) \((T, F, T, F) \)

(D) \((F, T, F, F) \)

(E) Multiple Answers Correct
Clicker Question

What is the input length of SAT?
(how would you efficiently encode a SAT input?)

(A) $O(n+m)$
(B) $O(nm)$
(C) $O(n + m\log(n))$
(D) $O(2^n)$
(E) None of the above
Clicker Question

What is the input length of SAT?
(how would you efficiently encode a SAT input?)

(A) $O(n+m)$
(B) $O(nm)$
(C) $O(n + m\log(n))$
(D) $O(2^n)$
(E) None of the above
Design an algorithm recognizing SAT.
What is its runtime?

(A) $O(2^n m)$
(B) $O(n^m)$
(C) $O(nm)$
(D) $O(n^2m)$
(E) $O(n + m)$
Clicker Question

Design an algorithm recognizing SAT.
What is its runtime?

(A) $O(2^n m)$
(B) $O(n^m)$
(C) $O(nm)$
(D) $O(n^2 m)$
(E) $O(n^+ m)$
The Probabilistic Method

some of us see the world in terms of expected value. We are very different from the rest of you.

www.chalkboardmanifesto.com