THE PROBABILISTIC METHOD WEEK 12: P vs NP

JOSHUA BRODY CS49/MATH59 FALL 2015

READING QUIZ

Which of the following is not a factor or term in the space complexity of the (ε, δ) -approximation for F_2 we saw last week?

- (A) log(n)
- (B) log(m)
- (C) 1/δ²
- (D) 1/ε²
- (E) None of the above

READING QUIZ

Which of the following is not a factor or term in the space complexity of the (ε, δ) -approximation for F_2 we saw last week?

(A) log(n)

(B) log(m)

(D) $1/\epsilon^2$

(E) None of the above

MILLENNIUM PROBLEMS

[Clay Mathematics Institute 2000]

CMI Millenium Prize: \$1,000,000 for solving:

- (1) Yang-Mills and Mass Gap
- (2) Riemann Hypothesis
- (3) P vs NP
- (4) Navier-Stokes Equations
- (5) Hodge Conjecture
- (6) Poincare Conjecture
- (7) Birch and Swinnerton-Dyer Conjecture

MILLENNIUM PROBLEMS

[Clay Mathematics Institute 2000]

CMI Millenium Prize: \$1,000,000 for solving:

- (1) Yang-Mills and Mass Gap
- (2) Riemann Hypothesis
- (3) P vs NP
- (4) Navier-Stokes Equations
- (5) Hodge Conjecture
- (6) Poincare Conjecture
- solved [Perelman 03]
 (7) Birch and Swinnerton-Dyer Conjecture

MILLENNIUM PROBLEMS

[Clay Mathematics Institute 2000]

CMI Millenium Prize: \$1,000,000 for solving:

- (1) Yang-Mills and Mass Gap
- (2) Riemann Hypothesis
- (3) P vs NP
- (4) Navier-Stokes Equations
- (5) Hodge Conjecture
- (6) Poincare Conjecture
- solved [Perelman 03]
 (7) Birch and Swinnerton-Dyer Conjecture

LAST TWO WEEKS OF SEMESTER

- decision vs optimization problems
- polynomial time verifiers
- **P**, **NP**
- NP-Complete
- polynomial time reductions
- Randomized algorithms for NPComplete problems

ALGORITHMS

CLRS definition: "An algorithm is any well-defined computational procedure that takes some value(s) as inputs and produces value(s) as output."

ALGORITHMS

CLRS definition: "An algorithm is any well-defined computational procedure that takes some value(s) as inputs and produces value(s) as output."

Important criteria:

(1) must always halt (eventually)
 (2) Algorithm solving problem X must always return what X asks for.

THE PROBABILISTIC METHOD

www.chelkheardmassfeste com