THE PROBABILISTIC METHOD WEEK 11: APPLICATIONS, RANDOMIZED ALGORITHMS

JOSHUA BRODY CS49/MATH59 FALL 2015

READING QUIZ

Which Frequency Moment can be approximated by a randomized algorithm that uses logarithmic space?

(A) F₀

(B) F₂

(C) F₆

(D) F₁₁

(E) Multiple Answers Correct

READING QUIZ

Which Frequency Moment can be approximated by a randomized algorithm that uses logarithmic space?

(A) **F**₀

(B) F₂

(C) F₆

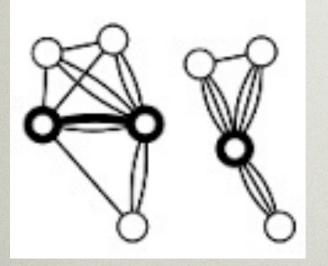
(D) F₁₁

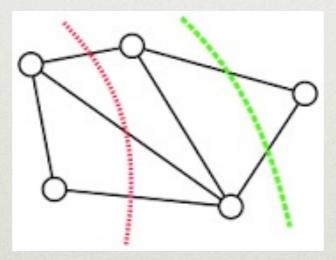
(E) Multiple Answers Correct

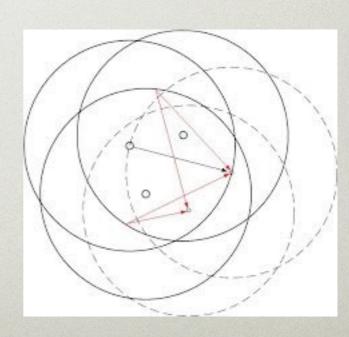
RANDOMIZED ALGORITHMS

Types of randomization:

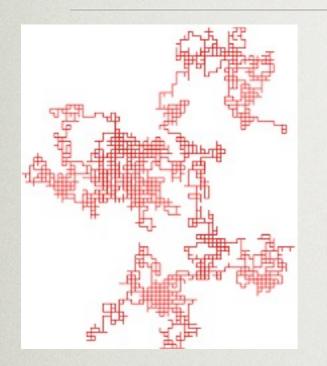
- algorithm uses randomness
 - Las Vegas: no error, expected runtime
 - Monte Carlo: small error, worst-case runtime
- input is randomized (algorithm often deterministic)







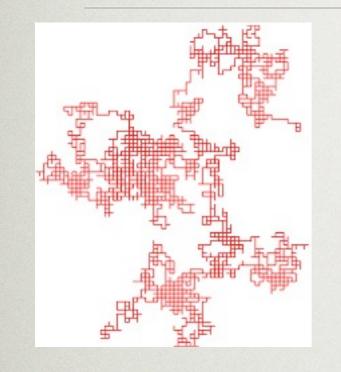
RANDOMIZED ÅLGORITHMS



Why randomized algorithms?

- reduce runtime (or space or ...)
- simpler algorithm
- deterministic not known or impossible

RANDOMIZED ÅLGORITHMS



Why randomized algorithms?

- reduce runtime (or space or ...)
- simpler algorithm
- deterministic not known or impossible

History

- developed late 1970's
- computational geometry
- primality testing (deterministic algorithm not known until 2003)
- many applications (machine learning, streaming, ...) assume randomness by default

You see a series of integers $a_1, a_2, ..., a_m \in \{1, ..., n\}$ that appear one at a time.

Design a randomized algorithm that outputs a_{K} for a uniform $1 \leq K \leq m$, using as little space as possible.

How much space is used?

(A) O(m)

(B) O(√m)

(C) O(log(m))

(D) O(log(log(m))

(E) None of the above

You see a series of integers $a_1, a_2, ..., a_m \in \{1, ..., n\}$ that appear one at a time.

Design a randomized algorithm that outputs a_K for a uniform $1 \le K \le m$, using as little space as possible.

How much space is used?

(A) O(m)

(B) **O(√m)**

(C) O(log(m))

(D) O(log(log(m))

(E) None of the above

- <u>Stream:</u> m elements from universe of size n
 - e.g., 6,9,4,2,1,3,8,8,6,5,7,2,9,3,3,4,7,12, ...
- <u>Goal</u>: Compute function F of stream e.g., # distinct elements, frequency moments, entropy, ...
- Example: F₀(S) = number of distinct elements in stream S

- <u>Stream</u>: m elements from universe of size n
 - e.g., 6,9,4,2,1,3,8,8,6,5,7,2,9,3,3,4,7,12, ...
- <u>Goal</u>: Compute function F of stream e.g., # distinct elements, frequency moments, entropy, ...
- Example: F₀(S) = number of distinct elements in stream S
- <u>Caveats:</u> limited space (e.g., *log(mn)* or *log²(mn)*), sequential access to S

- <u>Stream</u>: m elements from universe of size n
 - e.g., 6,9,4,2,1,3,8,8,6,5,7,2,9,3,3,4,7,12, ...
- <u>Goal</u>: Compute function F of stream e.g., # distinct elements, frequency moments, entropy, ...
- Example: F₀(S) = number of distinct elements in stream S
- <u>Caveats</u>: limited space (e.g., *log(mn)* or *log²(mn)*), sequential access to S
- <u>Stream sources:</u>
 - Network traffic: one pass, data not saved is lost forever
 - Data from hard disk: multiple passes possible, but costly

- <u>Stream</u>: m elements from universe of size n
 - e.g., 6,9,4,2,1,3,8,8,6,5,7,2,9,3,3,4,7,12, ...
- <u>Goal</u>: Compute function F of stream e.g., # distinct elements, frequency moments, entropy, ...
- Example: F₀(S) = number of distinct elements in stream S
- Caveats: limited space (e.g., log(mn) or log²(mn)), sequential access to S
- <u>Stream sources:</u>
 - Network traffic: one pass, data not saved is lost forever
 - Data from hard disk: multiple passes possible, but costly

Alon, Matias, Szegedy '96 <u>take home messages:</u> (i) Randomization usually needed (ii) Approximation usually needed

- <u>Stream</u>: m elements from universe of size n
 - e.g., 6,9,4,2,1,3,8,8,6,5,7,2,9,3,3,4,7,12, ...
- <u>Goal</u>: Compute function F of stream e.g., # distinct elements, frequency moments, entropy, ...
- Example: F₀(S) = number of distinct elements in stream S
- Caveats: limited space (e.g., log(mn) or log²(mn)), sequential access to S
- <u>Stream sources:</u>
 - Network traffic: one pass, data not saved is lost forever
 - Data from hard disk: multiple passes possible, but costly

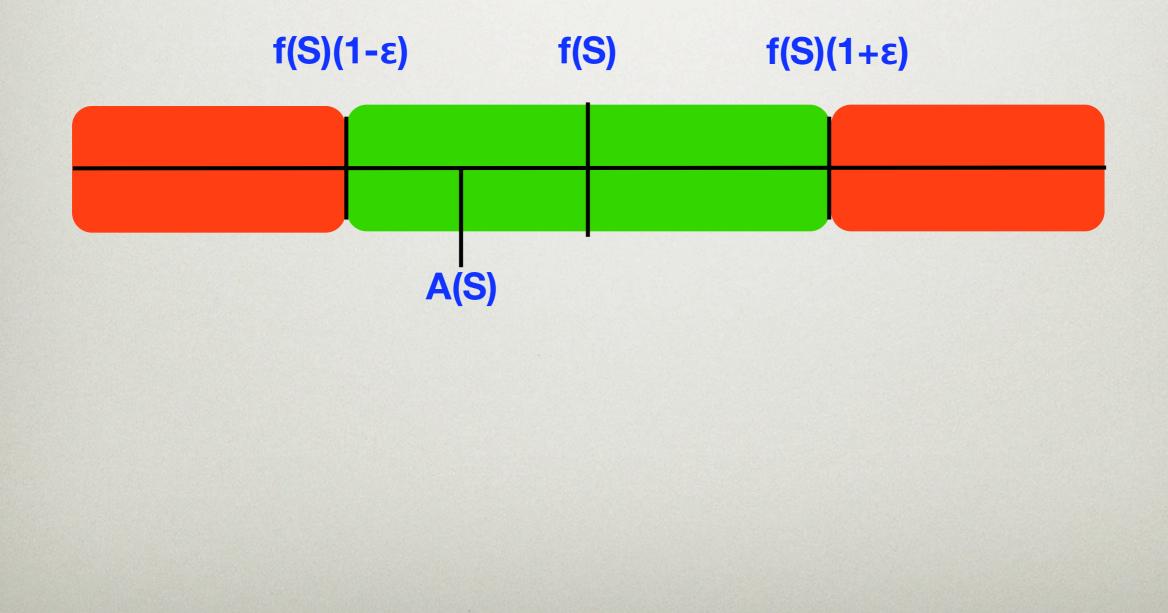
<u>Theorem:</u>

[Alon-Matias-Szegedy '96]

Approximating $F_2(s)$ possible in $O(\log(mn)/\epsilon^2)$ space.

PAC ALGORITHMS

Probably Approximately Correct (PAC) model: "most of the time we're close enough"



PAC ALGORITHMS

Probably Approximately Correct (PAC) model: "most of the time we're close enough"

Definition: A streaming algorithm **A** is an (ϵ, δ)-approximation for **f** if for any stream **S Pr[f(s)(1-\epsilon) ≤ A(S) ≤ f(s)(1+\epsilon)] ≥ 1-\delta**

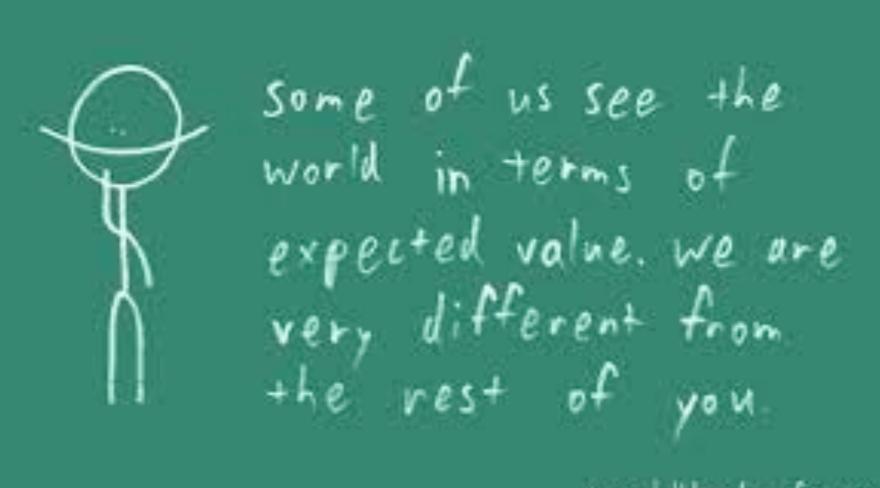
- What is **E[H_j]**?
- (A) $E[H_j] = -1$
- (B) $E[H_j] = 0$
- (C) $E[H_j] = 1/2$
- (D) $E[H_j] = f_j$
- (E) None of the above



- What is **E[H_i H_j]**?
- (A) $E[H_i H_j] = -1$
- (B) $E[H_i H_j] = 0$
- (C) $E[H_i H_j] = 1$
- (D) It Depends
- (E) Multiple Answers Correct

- What is **E[H_i H_j]**?
- (A) $E[H_i H_j] = -1$
- (B) $E[H_i H_j] = 0$
- (C) $E[H_i H_j] = 1$
- (D) It Depends
 - (E) Multiple Answers Correct

THE PROBABILISTIC METHOD



www.chelkheardmassfesses com