## THE PROBABILISTIC METHOD WEEK 10: APPLICATIONS



JOSHUA BRODY CS49/MATH59 FALL 2015

#### **READING QUIZ**

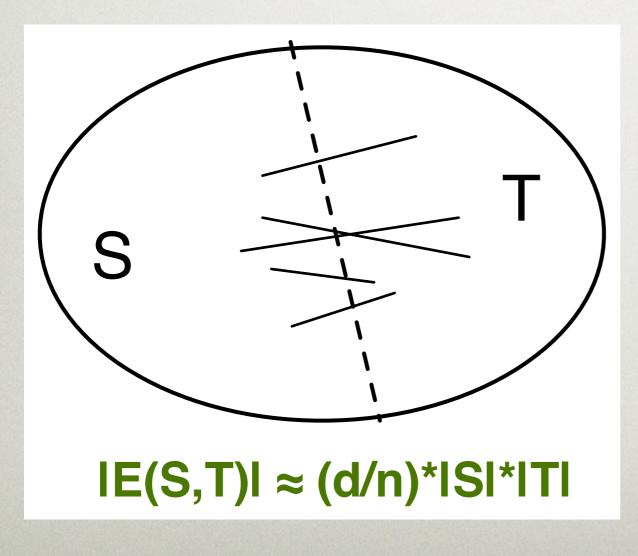
What is a magic graph  $G = (L \cup R, E)$ ?

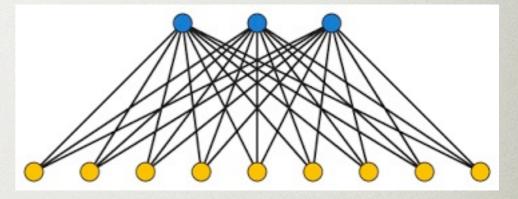
- (A) a sparse bipartite graph
- (B) a dense bipartite graph
- (C) a bipartite graph where any  $v \in L$  has d neighbors
- **(D)** a bipartite graph where any **S**  $\subseteq$  **L** has many neighbors
- (E) multiple answers correct

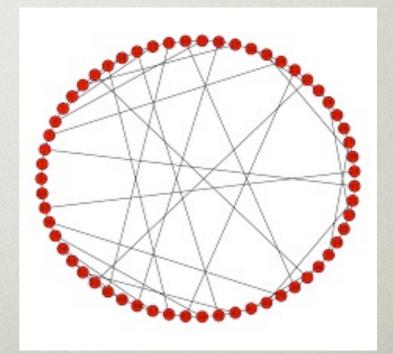
### **READING QUIZ**

What is a magic graph  $G = (L \cup R, E)$ ?

- (A) a sparse bipartite graph
- (B) a dense bipartite graph


(C) a bipartite graph where any  $v \in L$  has d neighbors

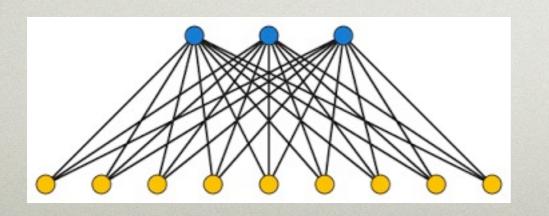

**(D)** a bipartite graph where any  $S \subseteq L$  has many neighbors

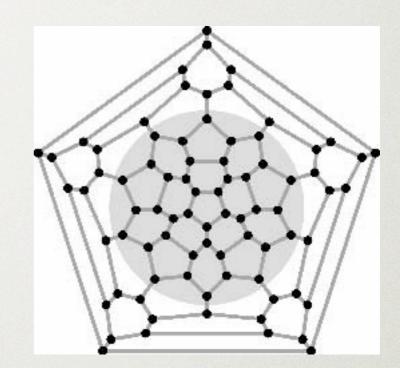

(E) multiple answers correct

### EXPANDER GRAPHS

- sparse graphs with high connectivity
- d-regular: each vertex has d neighbors
- graphs "look random"






# WHY EXPANDER GRAPHS?

#### **Applications:**

- derandomization
- coding theory
- error de-amplification
- cryptography
- complexity theory





#### More on Expanders:

- explicit constructions
- random walks
- spectral analysis

# **RANDOMIZED ÅLGORITHMS**

```
Algorithm A(x):
```

```
count = 0;
```

```
if heads {
```

```
count++;
```

```
} else {
```

. . .

```
if rand(10)>5 {
```

```
count += x;
```

#### Randomized Algorithm A:

- input: x
- random string r
- output: YES, NO

#### **One-sided** error

- YES input: must output YES
- NO input: output NO w/prob > 15/16

**Goal:** minimize *runtime*, *space*, *amount* of *randomness*, *error*, ...

#### What is **Pr<sub>R</sub>[A(x,R) error**]?

- (A) 1/3
- (B) 1/4
- (C) 1/10d
- (D) 1/16
- (E) none of the above

#### What is **Pr<sub>R</sub>[A(x,R) error**]?

(A) 1/3

(B) 1/4

(C) 1/10d

(D) 1/16 (E) none of the above

How many times should you repeat A(x,R) to achieve error < 1/d?

- (A) O(2<sup>d</sup>)
- (B) **O(d**<sup>2</sup>)
- (C) O(d)
- (D) O(log d)
- (E) none of the above

How many times should you repeat A(x,R) to achieve error < 1/d?

(A) O(2<sup>d</sup>)

(B) **O(d**<sup>2</sup>)

(C) O(d)

(D) O(log d)

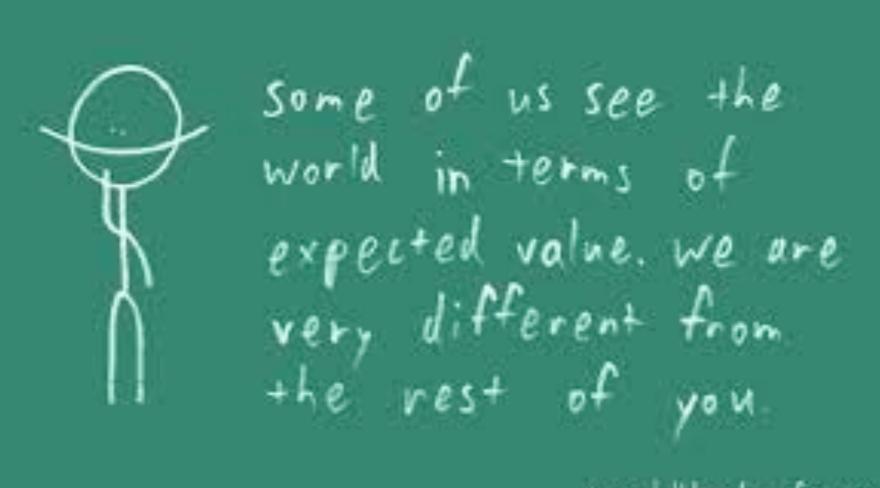
(E) none of the above

How many  $v \in L$  have all bad neighbors?

- (A) at most d
- (B) at most n/2
- (C) at most n/10d
- (D) at most d/n
- (E) none of the above

How many  $v \in L$  have all bad neighbors?

(A) at most d


(B) at most n/2

(C) at most n/10d

(D) at most d/n

(E) none of the above

#### THE PROBABILISTIC METHOD



www.chelkheardmassfesses com