THE PROBABILISTIC METHOD WEEK 10: Applications

Joshua Brody CS49/Math59 Fall 2015

READING QUIZ

What is the Multiparty Pointer Jumping problem MPJ?

- (A) MPJ[i, f, x] := x[f(i)]
- (B) MPJ[i, j, x] := x[i+j]
- (C) MPJ[i, x] := xi
- (D) MPJ[i, j, x] := $x[i \oplus j]$
- (E) None of the Above

READING QUIZ

What is the Multiparty Pointer Jumping problem MPJ?

- (A) MPJ[i, f, x] := x[f(i)]
- (B) MPJ[i, j, x] := x[i+j]
- (C) MPJ[i, x] := xi
- (D) MPJ[i, j, x] := $x[i \oplus j]$
- (E) None of the Above

MULTIPARTY POINTER JUMPING

MULTIPARTY POINTER JUMPING

PERMUTATION POINTER JUMPING

Which edge is also in G₁₁?

- (A) (1,3)
- (B)(2,3)
- (C)(2,5)
- (D) (4,5)
- (E) None of the above

Which edge is also in G_{IIH}?

(A) (1,3)

(B)(2,3)

(C)(2,5)

(D) (4,5)

(E) None of the above

Consider any vertex i ∈ H. What is E[degree(i)]?

- (A) p
- (B) pn
- (C)(1-p)
- (D) (1-p)n
- (E) None of the above

Consider any vertex i ∈ H. What is E[degree(i)]?

Consider any possible edge (u,v) of GIH.

What is $Pr[(u,v) \in G_{\Pi H}]$?

(A) p

(B) (1-p)

 $(C) p^2$

(D) p(1-p)

 $(E) 1-p^2$

Consider any possible edge (u,v) of GIH.

What is $Pr[(u,v) \in G_{\Pi H}]$?

$$(B)(1-p)$$

$$(D) p(1-p)$$

$$(E) 1-p^2$$

FINAL ANALYSIS

Claim: There exists H such that

 $cost(P_H) = O(nloglog(n)/log(n)$

FINAL ANALYSIS

Claim: There exists H such that

 $cost(P_H) = O(nloglog(n)/log(n)$

Proof: consider random H, each edge w/prob p

- BAD_i: event that i has > 2pn neighbors
- BAD_Π: event that G_{ΠH} has > 2nlog(1/p)/log(n)
 cliques
- BAD := \cup BAD_i \cup BAD_{II}
- Choose p := loglog(n)/log(n)
- $Pr[BAD] \le n Pr[BAD_i] + n! Pr[BAD_{ii}] << 1$

GENERALIZING TO MPJ

GENERALIZING TO MPJ

PRS protocol works only for permutations.

GENERALIZING TO MPJ

PRS protocol works only for permutations.

[Brody-Sanchez15]:

- adapts PRS for general functions
- edges in G_{II}H no longer independent.
- Dependent Random Graphs: each edge can depend on a few other edges.
- lower bound on clique #, upper bound on chromatic number still (asymptotically) the same.

THE PROBABILISTIC METHOD

