CS49/Math59 Lab 7 Solution Sketches

This writeup provides proof sketches for each problem on Lab 7.

Define the Hamming Distance between two bitstrings as HD(z,y) := [{i : x; # yi}|. In other
words, HD(z,y) is the number of indices on which z,y differ.

NOTE: There are a lot of moving parts in problem (5) and did not expect every student to
get it correctly. Assuming you started this lab early and contacted me if you had questions consider
this lab a success if you had solid solutions for problems 1-4 and made a reasonable attempt at
problem (5).

The solution to problem (5) is a good illustration of how error-correcting codes get used in
computer science beyond their original motivation.

This lab ties together several recent topics we’ve discussed in class, including the probabilistic
method, communication complexity, randomized algorithms, and error-correcting codes.

Historically, there have been two models of randomized communication: the public-coin and the
private-coin models. In the public-coin model, there is an infinitely long random string R € {0, 1}*.
Both players see this random string, and can use it to help decide what messages to send. In the
private-coin model, Alice and Bob each have their own infinitely-long random string R4, Rp : {0,1}*
respectively. Alice uses R4 and Bob uses Rp, and neither player sees the other player’s random
string (just like they don’t see each other’s inputs). Randomized protocols are judged by two
criteria: cost and error.

e The cost of a protocol P, written cost(P), is defined as the worst-case number of bits that
get sent during the run of a protocol, taken over all input pairs and all possible choices for
the random string(s).

e The error of a protocol P, written err(P), is defined as:

max Pr[P(z,y) # f(z,y)] .

x?y

In this lab, you will examine the randomized communication complexity of the EQUALITY function.
Recall that EQ : {0,1}" x {0,1}" — {0,1} is defined as EQ(x,y) = 1 iff + == y. This can be
modeled as a communication problem by giving Alice x and Bob y. We’ve seen previously that
Alice and Bob must exchange at least n bits total to compute EQ using a deterministic protocol.
Things get easier if we allow randomized communication—there is an 8-bit, 1/100-error public-coin
protocol for EQ.



1. Consider the following simple two-bit public-coin protocol P for EQUALITY. Alice and Bob
use R to generate a random index i € {1,...,n}. Then, they exchange z; and y; and output
1 iff x; == y;. Protocol P is efficient, but has high error. Compute the error of P.

Solution. First, note that when z == y, then x; == y; for each 1 < i < n. Therefore,
Alice/Bob always correctly output 1 when x,y are equal.

When z # y, Alice and Bob correctly output 0 if x; # y;. Thus, the success probability is
equal to HD(z,y)/n. Among all x # y this is minimized when HD(z,y) = 1 i.e. x,y differ

in a single bit. In this case, the success probability is 1/n, so err(P) =1 —1/n = =1,

2. Note that the previous protocol has one-sided error: if x == y, then the protocol always
correctly outputs that = and y are equal. Use this observation to create a new protocol
P’ with error < 1/4. What is cost(P’)? (This protocol has good error, but is not terribly
communication-efficient.)

Solution. Multiple solutions are possible; here are the two most natural choices:

e Run the protocol from problem (1) k& times, and output 1 iff each run of the protocol

outputs 1.

e Select a set S C {1,...,n} of size |S| = k uniformly at random from all possible such
subsets. Then, Alice/Bob exchange x;, y; for each i € S and output 1 iff z; == y; for all
such 3.

These protocols are very similar, in that players exchange x;, y; for several randomly sampled
indices 4. In the first protocol, indices are sampled with replacement. In the second protocol,
they are sampled without replacement. Typically, the difference in ampling with or without
replacement is negligible, and that’s the case here. Now, let’s analyze how many bits need to
be exchanged for each protocol.

e In the first case, we only get an error when each of the k instances gives an error. This
happens with probability (1 — 1/n)*. We want this error to be at most 1/4. Using
1+ 2 < ¢® and setting the error to be at most 1/4, we have an error of at most

1 k
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which happens iff k¥ > nin(4) ~ 1.39n. (Note that this protocol is even worse than if
Alice just sent her entire input to Bob!)

e In the second case, we get a worst-case error if the single ¢ where x, y differ does not get
selected. Since we select k out of n coordinates, this happens with probability 1 — k/n.
This is at most 1/4 iff £ > 3n/4.

3. In the lab exercises for week 10, you showed how to take a randomized algorithm .4 that
takes one of N possible inputs and had 1/4 error and produce another randomized algorithm
A’ for the same problem that had 1/3 error and used only O(loglog N) random bits.

Use this derandomization result together with the O(1)-bit, (1/100)-error public-coin protocol
for EQ and show there exists a 1/3-error public-coin EQ protocol that uses only O(logn)
random bits.



Solution. The proof of the week 10 lab exercises can go through basically verbatim. The in-
put for the EQUALITY protocol is a pair of n-bit strings. Thus, there are N := 27 x 2" = 22n
different possible inputs for the EQUALITY protocol. Hence we can use the derandomiza-
tion result from week 10 to get the randomness down to O(loglog N) = O(loglog(2?")) =
O(log(n)) random bits.

4. Using your answer to the previous problem, show that there exists a 1/3-error, private-coin
protocol’ @ for EQUALITY that has cost(Q) = O(logn).

Solution. The protocol from problem (3) has 1/3-error and O(1)-bits of communication
and uses just O(logn) public random bits. To get a private-coin protocol out of this, Alice
generates O(logn) random bits (using her private randomness) and sends it to Bob, afterwhich
they run the protocol from problem (3) using these random bits as the “public” randomness.
The error remains 1/3, and the communication cost is now O(1) + O(logn) = O(logn).

5. The previous answer showed that it’s possible to compute EQUALITY using private random-
ness and only O(logn) communication. However, this result has a drawback—the protocol
itself is not explicitly constructed. In this problem, your task is to design an explicit O(logn)-
bit, 1/3-error protocol for EQUALITY.

Hint: First, create an O(logn)-bit, (1—1/320)-error protocol by using error-correcting codes.
Your protocol should have one-sided error, erring only when x # y. Then, repeat this initial
protocol several times to drive down the error. How many times do you need to repeat the
protocol to achieve error 1/37

Solution. This protocol ties together intuition from a lot of different things you’ve learned
about over the past month.

A first piece of intuition is that the protocol from problem (1) has really terrible error because
the input strings x, y could differ in just one coordinate. In problem (2) you saw how to drive
this error down to 1/4 (good!) but at a cost of ©(n) communication (bad!). The main reason
why the blowup in communication was so high was because the error in the protocol from
problem (1) was 1 — 1/n.

The protocol from problem (1) would run much better if only we could somehow guarantee
that the Hamming Distance between the input strings was large. Error correcting codes do
just that.

Recall that we saw in class an ECC based on the magic graph construction that had rate 1/4
and distance 1/10d, and that we could construct suitable magic graphs as long as d > 32.
Let’s fix such an ECC.

Imagine a world in which the strings for EQUALITY are codewords for the ECC. Then, if
x # vy, we have HD(x,y) > n/10d, and the error in the protocol from problem (1) would be
1—1/10d. Make d as small as possible to minimize this error, so we set d := 32, and the error
is 1 —1/320 =~ 0.997. Now, this still seems like a pretty terrible error, but because 0.997 is a

n fact, this result doesn’t hold just for EQUALITY. The derandomization result from lab during week 10 actually
yields the following result: for any function f : {0,1}" x {0,1}" — {0, 1}, if there is a public-coin, e-error protocol
that uses ¢ bits of communication, then there is a (e 4+ d)-error, private-coin protocol for f that uses ¢+ O(log(n/d))
bits of communication.



constant bounded away from 1 we can actually run the repeated protocol (as in problem (2))
to drive down this error efficiently.

Specifically, taking the sampling-with-replacement version, we need k such that (1—1/320)% <
1/4. This happens iff £ > 443. Note that k is a constant, whereas in the protocol from
problem (2), k = Q(n). Thus, getting a reasonable error only costs us a constant blow-up in
communication.

There are still two catches with the protocol above. First, the protocol from problem(1)
was public-coin, and we need a private coin protocol. Second, we must create a protocol
that works for any pair of n-bit strings z,y. The solution is to encode z,y using the error-
correcting code, then run a private-coin version of protocol (1), as was done in problem (4).
The complete solution is below.

(a) Let C be an error-correcting code with rate 1/4 and distance 1/320 as guaranteed by
the magic-graph-based ECC we saw in class. Let ENC denote the encoding function.
Use a code that maps n-bit strings to n’ = 4n bit strings. (the rate is 1/4 = n/n’).

(b) On inputs z,y € {0,1}", Alice and Bob individually compute 2’ := ENC(z) and ¢/ :=
ENC(y).

(c) Then, using her private randomness Alice generates k = O(1) random indices iy, . .., i €
{1,...,n'}. Let S :={iy,... ik}

(d) First, she sends i1, ...,i; to Bob.

(e) Then, she sends «/ for each i € S to Bob.

(f) for each ¢ € S, Bob compares z to y, and outputs 1 iff each pair of bits is equal.

As with other EQUALITY protocols, this protocol has one-sided error (when z = y, the
protocol always says so. Because of the guarantee of the error-correcting code, when x # v,
HD(z',y") > n/320. The protocol produces a false positive only when z, == y, for each i,
which happens with probability (1 — 1/320)% < 1/4.

The protocol is private coin because Alice generates the randomness herself and communicates
it to Bob. The cost of this protocol is O(klog(n')) = O(logn) since k is a constant and
n’ = O(n).



