
CS49/Math59 Lab 7

This lab assignment is due before the start of class on Wednesday, November 25. Homework
handed in during class but after I begin the lecture will be counted as late submissions. Some
things to note:

• This is a one week lab.

• You may have one partner for this assignment, but are not required to. If you work with a
partner, submit just one writeup.

• Aside from your partner, you should not discuss problems in detail with anyone. It’s OK
to discuss approaches at a high level. In fact, I encourage you to discuss general strategies.
However, you should not reveal specific details of a solution, nor should you show your written
solution to anyone else.

• Make sure your names are on your submission, and show your work to maximize partial
credit.

This lab ties together several recent topics we’ve discussed in class, including the probabilistic
method, communication complexity, randomized algorithms, and error-correcting codes.

Historically, there have been two models of randomized communication: the public-coin and the
private-coin models. In the public-coin model, there is an infinitely long random string R ∈ {0, 1}∗.
Both players see this random string, and can use it to help decide what messages to send. In the
private-coin model, Alice and Bob each have their own infinitely-long random string RA, RB : {0, 1}∗
respectively. Alice uses RA and Bob uses RB, and neither player sees the other player’s random
string (just like they don’t see each other’s inputs). Randomized protocols are judged by two
criteria: cost and error.

• The cost of a protocol P, written cost(P), is defined as the worst-case number of bits that
get sent during the run of a protocol, taken over all input pairs and all possible choices for
the random string(s).

• The error of a protocol P, written err(P), is defined as:

max
x,y

Pr[P(x, y) 6= f(x, y)] .

In this lab, you will examine the randomized communication complexity of the Equality function.
Recall that EQ : {0, 1}n × {0, 1}n → {0, 1} is defined as EQ(x, y) = 1 iff x == y. This can be
modeled as a communication problem by giving Alice x and Bob y. We’ve seen previously that
Alice and Bob must exchange at least n bits total to compute EQ using a deterministic protocol.
Things get easier if we allow randomized communication—there is an 8-bit, 1/100-error public-coin
protocol for EQ.
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1. Consider the following simple two-bit public-coin protocol P for Equality. Alice and Bob
use R to generate a random index i ∈ {1, . . . , n}. Then, they exchange xi and yi and output
1 iff xi == yi. Protocol P is efficient, but has high error. Compute the error of P.

2. Note that the previous protocol has one-sided error : if x == y, then the protocol always
correctly outputs that x and y are equal. Use this observation to create a new protocol
P ′ with error ≤ 1/4. What is cost(P ′)? (This protocol has good error, but is not terribly
communication-efficient.)

3. In the lab exercises for week 10, you showed how to take a randomized algorithm A that
takes one of N possible inputs and had 1/4 error and produce another randomized algorithm
A′ for the same problem that had 1/3 error and used only O(log logN) random bits.

Use this derandomization result together with the O(1)-bit, (1/100)-error public-coin protocol
for EQ and show there exists a 1/3-error public-coin EQ protocol that uses only O(log n)
random bits.

4. Using your answer to the previous problem, show that there exists a 1/3-error, private-coin
protocol1 Q for Equality that has cost(Q) = O(log n).

5. The previous answer showed that it’s possible to compute Equality using private random-
ness and only O(log n) communication. However, this result has a drawback—the protocol
itself is not explicitly constructed. In this problem, your task is to design an explicit O(log n)-
bit, 1/3-error protocol for Equality.

Hint: First, create an O(log n)-bit, (1−1/320)-error protocol by using error-correcting codes.
Your protocol should have one-sided error, erring only when x 6= y. Then, repeat this initial
protocol several times to drive down the error. How many times do you need to repeat the
protocol to achieve error 1/3?

6. Attribution. Did you get assistance on any of the problems on this assignment from anyone
aside from me and/or your lab partner? For example, did you discuss any problems at a
high level with other students? Did you accidentally stumble on solutions while doing a
websearch on related material? If so, descibe the nature of the assistance here. (e.g. “We
briefly discussed problem 1 with X,Y, and Z” or “We saw a solution on 〈this website〉 before
finding our own solution”) If you (and your partner) worked alone, please say so here.

7. Lab Questionnaire. (None of these questions will have an impact on your grade, this is to
help provide the feedback I need to make the course the best it can be)

(a) Approximately how many hours per partner did you spend on this lab?

(b) How difficult did you find this lab? (enter a number 1-5, with 5 being very difficult and
1 being very easy)

(c) Describe the biggest challenge you faced on this lab.

1In fact, this result doesn’t hold just for Equality. The derandomization result from lab during week 10 actually
yields the following result: for any function f : {0, 1}n × {0, 1}n → {0, 1}, if there is a public-coin, ε-error protocol
that uses t bits of communication, then there is a (ε+ δ)-error, private-coin protocol for f that uses t+O(log(n/δ))
bits of communication.
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