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EXPANDER GRAPHS AND THEIR APPLICATIONS

SHLOMO HOORY, NATHAN LINIAL, AND AVI WIGDERSON

An Overview

A major consideration we had in writing this survey was to make it accessible
to mathematicians as well as to computer scientists, since expander graphs, the
protagonists of our story, come up in numerous and often surprising contexts in
both fields.

But, perhaps, we should start with a few words about graphs in general. They
are, of course, one of the prime objects of study in Discrete Mathematics. However,
graphs are among the most ubiquitous models of both natural and human-made
structures. In the natural and social sciences they model relations among species,
societies, companies, etc. In computer science, they represent networks of commu-
nication, data organization, computational devices as well as the flow of computa-
tion, and more. In mathematics, Cayley graphs are useful in Group Theory. Graphs
carry a natural metric and are therefore useful in Geometry, and though they are
“just” one-dimensional complexes, they are useful in certain parts of Topology, e.g.
Knot Theory. In statistical physics, graphs can represent local connections between
interacting parts of a system, as well as the dynamics of a physical process on such
systems.

The study of these models calls, then, for the comprehension of the significant
structural properties of the relevant graphs. But are there nontrivial structural
properties which are universally important? Expansion of a graph requires that
it is simultaneously sparse and highly connected. Expander graphs were first de-
fined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the
early ’70s. The property of being an expander seems significant in many of these
mathematical, computational and physical contexts. It is not surprising that ex-
panders are useful in the design and analysis of communication networks. What is
less obvious is that expanders have surprising utility in other computational settings
such as in the theory of error correcting codes and the theory of pseudorandom-
ness. In mathematics, we will encounter e.g. their role in the study of metric
embeddings, and in particular in work around the Baum-Connes Conjecture. Ex-
pansion is closely related to the convergence rates of Markov Chains, and so they
play a key role in the study of Monte-Carlo algorithms in statistical mechanics and
in a host of practical computational applications. The list of such interesting and
fruitful connections goes on and on with so many applications we will not even
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be able to mention. This universality of expanders is becoming more evident as
more connections are discovered. It transpires that expansion is a fundamental
mathematical concept, well deserving to be thoroughly investigated on its own.

In hindsight, one reason that expanders are so ubiquitous is that their very defini-
tion can be given in at least three languages: combinatorial/geometric, probabilistic
and algebraic. Combinatorially, expanders are graphs which are highly connected;
to disconnect a large part of the graph, one has to sever many edges. Equivalently,
using the geometric notion of isoperimetry, every set of vertices has a (relatively)
very large boundary. From the probabilistic viewpoint, one considers the natural
random walk on a graph, in which we have a token on a vertex, that moves at
every step to a random neighboring vertex, chosen uniformly and independently.
Expanders are graphs for which this process converges to its limiting distribution
as rapidly as possible. Algebraically, one can consider the Laplace operator on the
graph and its spectrum. From this perspective, expanders are graphs in which the
first positive eigenvalue (of their Laplace operator) is bounded away from zero.

The study of expanders leads in different directions. There are structural prob-
lems: what are the best bounds on the various expansion parameters, and how
do they relate to each other and to other graph invariants? There are problems
concerning explicit constructions: how to efficiently generate expanders with given
parameters. These are extremely important for applications. There are algorith-
mic problems - given a graph, test if it is an expander with given parameters.
Finally, there is the problem of understanding the relation of expansion with other
mathematical notions, and the application of expanders to practical and theoretical
problems.

In the past four decades, a great amount of research has been done on these
topics, resulting in a wide-ranging body of knowledge. In this survey, we could
not hope to cover even a fraction of it. We have tried to make the presentation
as broad as possible, touching on the various research directions mentioned above.
Even what we do cover is of course incomplete, and we try to give the relevant
references for more comprehensive coverage. We have also tried to mention in each
section related research which we are not covering at all and to reference some of
this as well.

The selection of material naturally reflects our interests and biases. It is rather
diverse and can be read in different orders, according to the reader’s taste and
interests.

General background material on the computer science side includes the books
on Computational Complexity (specifically, complexity classes) [Pap94, Sip97], on
Algorithms [CLRS01] and on Randomized Algorithms [MR95], and the survey on
the P versus NP problem [Wig06].

This article evolved from lecture notes for a course on expanders taught at the
Hebrew University, Israel, in 2003 by Nati Linial and Avi Wigderson. We are greatly
indebted to the scribes of the course notes: Ran Gilad-Bachrach, Danny Harnik,
Boaz Barak, Udi Wieder, Eran Ofek, Erez Waisbard, Yael Vinner-Dekel, Yishai
Beeri, David Statter, Eyal Bigman, Tamir Hazan, Elon Portugaly, Ariel Elbaz,
Yuval Filmus, Michal Igell, Eyal Rozenman, Danny Gutfreund, and Yonatan Bilu.
Also, we acknowledge that the proof that Margulis construction is an expander is
taken (with slight changes) from course notes of Ravi Boppana, with Mukesh Dalal
as scribe.
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We are also grateful for the careful reading of this manuscript by Mark Goresky,
Eyal Rozenman and Dave Xiao. Their many constructive comments significantly
improved its presentation. Special thanks to Eyal Rozenman for his help with
writing the section on Cayley graphs.
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1. The magical mystery tour

We begin our discussion with three fundamental problems from three different
domains. At first sight these problems seem to have very little to do with expander
graphs, or even graph theory, but as we shall see, they can all be solved using
expander graphs.
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1.1. Three motivating problems.

1.1.1. Hardness results for linear transformations. The P vs. NP problem is ar-
guably the most important open problem in theoretical computer science. Despite
its great significance and despite intensive research efforts, very little progress has
been made. But interesting aspects of computational complexity can be investi-
gated in other, more restricted contexts. For example, we may consider evaluating
polynomials over a field using only the field’s arithmetic, or even evaluating linear
transformations using only addition and multiplication by scalars from the field.
Valiant [Val76] considered the following natural problem:

Problem 1.1. Let A be an n×n matrix over the field1 F . What is the least number
of gates in a circuit that computes the linear transformation x �→ Ax? Each gate
is specified by two field elements a and b. Such a gate receives two inputs x and y
and outputs ax + by.

Aside from its profound theoretical importance, certain instances of this question
have far-reaching technological significance. Consider the matrix ar,s = ωrs (n−1 ≥
r, s ≥ 0), where ω is a primitive n-th root of unity. The transformation x �→ Ax is
the Discrete Fourier Transform, which is fundamental to many modern technologies
involving signal processing, machine learning, etc. As observed by Cooley and
Tukey [CT65], there is a circuit realizing this linear transformation (the so-called
Fast Fourier Transform (FFT)) with only O(n log n) gates. Therefore the least
number of gates in such a circuit is between O(n log n) and n (which are required
just to input the vector x). This may seem like a small gap in our knowledge,
but it is rather significant. The technological implications of a Very Fast Fourier
Transform, i.e. an O(n)-sized circuit that computes the transform (should one
exist), are hard to overestimate. On the other hand, it would be a great theoretical
breakthrough to establish a matching lower bound of Ω(n log n), or even rule out
the existence of such a circuit with only O(n) gates.

For every field F , it is fairly easy to show that for most n× n matrices A, every
circuit realizing A must have Ω(n2/ log n) gates. This is based on a counting argu-
ment that compares the number of circuits with a given number of gates and the
number of n×n matrices over the field. As is often the case in computational com-
plexity, despite this abundance of computationally hard functions, we are unable
to exhibit any specific, explicit linear transformation A that requires asymptot-
ically more then O(n) gates. In an attempt to solve this problem, Valiant [Val76]
conjectured that super regular transformations are “hard” in this sense.

Definition 1.2 (Super Regular Matrix). A matrix A is super regular if every square
sub-matrix of A has full rank.

Valiant considered the graph layout of a circuit which realizes the linear trans-
formation corresponding to a super regular matrix. His main observation was that
this graph must be a super concentrator :

Definition 1.3 (Super Concentrator). Let G = (V, E) be a graph and let I and
O be two subsets of V with n vertices, each called the input and output sets
respectively. We say that G is a super concentrator if for every k and every S ⊆ I
and T ⊆ O with |S| = |T | = k, there exist k vertex disjoint paths in G from S to
T .

1This problem is interesting for finite as well as for infinite fields.
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It is a simple exercise to show that indeed the underlying graph of any circuit for
a super regular matrix is a super concentrator (with inputs and outputs retaining
their meaning in both). Valiant conjectured that any super concentrator must
have � n edges. That would have implied that any circuit which computes a
super regular matrix must have � n gates. However, Valiant himself disproved the
conjecture and presented super concentrators with O(n) edges. As you may have
guessed, this is where expanders come into the picture.

We note that this construction can actually be used to give a super regular ma-
trix that has a linear sized circuit, which seems to put this approach to rest. This
is not quite so, and Valiant’s ideas were later realized, as follows: If we consider
circuits with more than two inputs per gate but where the circuit’s depth is re-
stricted, then superlinear lower bounds for the number of edges in depth-limited
super concentrators were proven [DDPW83]. Subsequently the desired superlinear
lower bounds for computing the associated linear transformations in bounded-depth
circuit model were derived [Lok01, RS03].

Even though this approach did not yield strong lower bounds on circuit sizes,
these attempts have brought forward the importance of sparse super concentrators
in network theory and other areas. Valiant’s idea has eventually had a major impact
on the field.

We now skip to a totally different problem.

1.1.2. Construction of good error correcting codes. One of the most fundamental
problems in communication is noise. Suppose that Alice has a message of k bits
which she would like to deliver to Bob over some (noisy) communication channel.
The problem is that noise in the channel may corrupt the message so that Bob
receives a message that differs from the one sent by Alice.

In his ground-breaking paper “A Mathematical Theory of Communication”
[Sha48], Claude Shannon laid the foundations for Information Theory and the
mathematical theory of communication. The problem of communicating over a
noisy channel (which in the form below was suggested by Hamming [H50]) occupies
a central part of this theory.

Problem 1.4 (communication over noisy channel). Alice and Bob communicate
over a noisy channel. A fraction p of the bits sent through the channel may be
altered. What is the smallest number of bits that Alice can send, assuming she
wants to communicate an arbitrary k-bit message, so that Bob should be able to
unambiguously recover the original message?

To solve this problem, Shannon suggested creating a dictionary (or code) C ⊆
{0, 1}n of size |C| = 2k and using a bijective mapping (“an encoding”) ϕ : {0, 1}k →
C. To send a message x ∈ {0, 1}k, Alice transmits the n-bit encoded message
ϕ(x) ∈ C. It is assumed that Bob receives a string y ∈ {0, 1}n that is a corrupted
version of the message actually sent ϕ(x) ∈ C. Bob finds the codeword z ∈ C that
is closest to y (the metric used is the Hamming distance: dH(u, v) is the number
of coordinates i where ui �= vi). He concludes that the message actually sent was
ϕ−1(z). If the distance between every two words in C is greater than 2pn, it is
guaranteed that indeed z = ϕ(x), and Bob correctly infers the message sent by
Alice.

The problem of communicating over a noisy channel is thus reduced to the
problem of finding a good dictionary: namely, a set C of n-bit strings of largest
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possible cardinality subject to the condition that every two strings in C are at a
large Hamming distance.

Definition 1.5 (the rate and distance of a dictionary). Let C ⊆ {0, 1}n be a
dictionary. Its rate and (normalized) distance are defined by:

R =
log |C|

n
,

δ =
minc1 �=c2∈C dH(c1, c2)

n
.

As we saw before, the distance of a dictionary controls its power to overcome
noise. A code’s rate measures its efficiency in channel utilization. At this point we
can refine the problem and ask:

Problem 1.6 (refined communication problem). Is it possible to design arbitrarily
large dictionaries {Ck} of size |Ck| = 2k, with R(Ck) ≥ R0 and δ(Ck) ≥ δ0 for
some absolute constants R0, δ0 > 0? Moreover, can we make these codes explicit
and efficiently encodable and decodable?

This problem and its relatives (optimizing the code’s parameters, and the algo-
rithms’ efficiency, in this and other error models and communication settings) is the
subject of Coding Theory, a rich and active field initiated by Shannon’s work (see
e.g. [MS77a, MS77b] and [vL99] for the general theory and Sudan’s notes [Sud00]
for complexity theoretic aspects of the field). It took over 20 years of research until
even the basic Problem 1.6 was resolved, but below we present a simple solution
to this problem using expander graphs. However, before we do that, let us present
our third motivating problem.

1.1.3. Deterministic error amplification for RP. The field of probabilistic algo-
rithms burst into existence within Theoretical Computer Science, with the fast
primality tests of Rabin [Rab80] and of Solovay and Strassen [SS77]. Given a k-bit
integer x and a string r of k random bits, these algorithms efficiently compute a
boolean valued function f(x, r) with the following property. If x is prime, then
f(x, r) = 1 for all choices of r. Otherwise, if x is composite, f(x, r) = 1 with prob-
ability smaller than 1/2 over a randomly chosen r. If f = 1, the algorithm declares
x a prime, and otherwise declares it to be composite. It never fails on primes, and
for every composite x its probability of failure is at most 1/2.

The error bound 1/2 may not be very satisfactory, and one would like to reduce
it to some desired level. A very simple way to reduce our failure probability is to
apply the same algorithm repeatedly with new randomly chosen r’s. Repeating it
(say) d times will reduce the probability of error to below 2−d. On the other hand,
the running time and the number of random bits used increase by a factor of d.
Is there a way to reduce the error “deterministically” without using more random
bits, or at least using less than the obvious procedure above? We will see several
answers to this question in these notes, and this section contains an initial advance
on the problem. The importance of minimizing the number of random bits may not
be evident, but we can assure the reader that it is a basic theoretical problem and,
moreover, that getting your hands on good random bits is a nontrivial practical
problem.

The above-mentioned primality testing algorithms belong to the class RP of
Randomized Polynomial-Time algorithms. It is in this general setting that we
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discuss our problem. Let {0, 1}∗ denote the set of all finite binary strings. Then
a language L ⊆ {0, 1}∗ is in the class RP if there exists a randomized algorithm
A with a polynomial (in |x|) running time such that if x ∈ L, then A(x, r) = 1
(with certainty), whereas if x /∈ L, the probability of A(x, r) = 1 is smaller than
1/16. (The definition remains unchanged with any constant < 1 that we choose.
The constant 1/16 was chosen for notational convenience.) Note again that r is a
uniformly chosen random string of k bits, with k polynomially dependent on the
length |x| of the input x. In this case we say that L ⊆ {0, 1}∗ has a (1-sided error)
randomized polynomial time membership algorithm.

Problem 1.7 (Saving Random Bits). Assume that L ⊆ {0, 1}∗ has a (1-sided
error) randomized polynomial time membership algorithm. How many random
bits are needed in order to reduce the probability of error to be ≤ ε ? (Note that
we seek a bound that should apply to every input.)

1.2. Magical graphs. In the previous section we presented three seemingly un-
related problems. We now introduce a new object: a “Magical Graph” that will
enable us to solve all these problems. This object exhibits an “expansion” property
(a “combinatorial isoperimetric inequality”) to fit our three applications.

Definition 1.8 (Magical Graph). Let G = (L, R, E) be a bipartite graph. The
vertex set consists of L and R, two disjoint subsets, henceforth the left and right
vertex sets. We say that G is an (n, m; d)-magical graph if |L| = n, |R| = m, and
every left vertex has d neighbors and the following two properties hold (where Γ(S)
denotes the set of neighbors of a set S in G):

(1) |Γ(S)| ≥ 5d
8 · |S| for every S ⊆ L with |S| ≤ n

10d .
(2) |Γ(S)| ≥ |S| for every S ⊆ L with n

10d < |S| ≤ n
2 .

As observed by Pinsker [Pin73] (for other but related expansion properties), such
graphs exist. The proof is by a probabilistic argument and it implies that, in fact,
most graphs are magical.

Lemma 1.9. There exists a constant n0 such that for every d ≥ 32 and n ≥
n0, m ≥ 3n/4 there exists an (n, m; d)-magical graph.

Proof. Let G be a random bipartite graph with n vertices on the left and m vertices
on the right, where each left vertex connects to a randomly chosen set of d vertices
on the right. We claim that with high probability G is a magical graph. We start
by proving that the first property holds with high probability.

Let S ⊆ L have cardinality s = |S| ≤ n
10d , and let T ⊆ R have cardinality

t = |T | < 5ds
8 . Let XS,T be an indicator random variable for the event that all

the edges from S go to T . It is clear that if
∑

XS,T = 0, where the sum is over
all choices of S and T as above, then the first property holds. The probability of
the event XS,T is (t/m)sd, and therefore using a union bound and the inequality
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n
k

)
≤ (ne/k)k, we get that:

Pr[
∑
S,T

XS,T > 0] ≤
∑
S,T

Pr[XS,T = 1] =
∑
S,T

(t/m)sd

≤
n/10d∑
s=1

(
n

s

)(
m

5ds/8

)(
5ds

8m

)sd

≤
n/10d∑
s=1

(ne

s

)s
(

8me

5ds

)5ds/8

·
(

5ds

8m

)sd

< 1/10.

The last inequality follows since the s-th term is bounded by 20−s.
Similarly, we bound the probability of violating the second property by an anal-

ogous expression, which is simpler to bound. For every S ⊂ L with cardinality
n

10d < s = |S| ≤ n
2 , and T ⊂ R with t = |T | < |S|, let YS,T be an indicator random

variable for the event that all the edges from S go to T . As before, we would like
to prove that the probability of the event

∑
YS,T = 0 is small:

Pr[
∑
S,T

YS,T > 0] ≤
∑
S,T

Pr[YS,T = 1] =
∑
S,T

(t/n)sd ≤
n/2∑

s=n/10d

(
n

s

)(
m

s

)
(s/m)sd

≤
n/2∑
s=1

[
(ne/s) · (me/s) · (s/m)d

]s
< 1/10.

As before, the last inequality follows by noting that for all s the quantity in square
brackets is bounded by 10−4. Therefore, most graphs are (n, m; d)-magical graphs.

�

We now turn to the solution of the three problems presented above. Note that
Lemma 1.9 is existential, whereas we need explicit constructions of magical graphs
to resolve our three problems. The issue of explicit constructions is an important
aspect of this field and of this article, but at present we show how to solve these
problems using the existence of magic graphs as a “black box”.

1.3. The three solutions.

1.3.1. A super concentrator with O(n) edges. We will see how magical graphs allow
us to construct super concentrators. These graphs exhibit incredibly high connec-
tivity despite the fact that they have only O(n) edges. There is a long and still
ongoing search for super concentrators with n input and output vertices and Kn
edges with K as small as possible. This “sport” has motivated quite a few im-
portant advances in this area. The current “world record” holders are Alon and
Capalbo [AC04].

If G is an (n, 3n/4; d)-magical graph, then |Γ(S)| ≥ |S| for every S ⊂ L with
|S| ≤ n

2 . By Hall’s marriage theorem (e.g., [Die97, Theorem 2.1.2]), for every S ⊆ L
of size |S| ≤ n

2 there is a perfect matching from S to Γ(S).
We use this fact to recursively construct a super concentrator C ′ with n vertices

on each side. For n below n0, simply observe that a complete bipartite graph is a
super concentrator with n2 edges.

For n ≥ n0 we construct a super concentrator C ′ with n inputs and outputs,
using three building blocks: (i) Two copies G1 = (L1, R1, E1) and G2 = (L2, R2, E2)



EXPANDER GRAPHS AND THEIR APPLICATIONS 449

CG
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G
2
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1
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1
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Figure 1. Constructing a super concentrator.

of our magical graph, where |Li| = n, and |Ri| = 3n/4. (ii) A super concentrator
C connecting the input set R1 to the output set R2. The input, output sets have
size 3n/4 and therefore C exists by induction. (iii) A perfect matching between L1

and L2. The input and output sets of our graph are L1 and L2 respectively. This
is illustrated in Figure 1.

We need to prove that the graph we have constructed, C ′, is indeed a super
concentrator and derive an upper bound on the number of its edges. Let S be a set
of input vertices and T a set of output vertices such that |S| = |T | = k.

If k ≤ n/2, then |ΓG1(S)| ≥ |S| and |ΓG2(T )| ≥ |T |, since G1, G2 are magical
graphs. Hence, by Hall’s theorem there exists a perfect matching from S to ΓG1(S)
and from T to ΓG2(T ). Let S′ ⊆ ΓG1(S) be the set of vertices matched to vertices
in S and likewise for T ′ and T . Since C is a super concentrator, the sets S′ and T ′

can be connected by k disjoint paths. Consequently, S and T can be connected by
disjoint paths in C ′.

If the two sets S and T are large, i.e. |S| = |T | = k > n/2, then there must exist
at least k − n/2 vertices in S that are matched to vertices in T by direct matching
edges of (iii) above. Therefore we can delete the matched vertices from S and T
and reduce the problem to the previous case of k ≤ n/2. It follows that C ′ is a
super concentrator.

We still need to provide an upper bound on the number of edges e(n) in our
n-inputs graph C ′. We obtain the following recursion:

e(n) ≤
{

2nd + n + e (3n/4) for n > n0

n2 for n ≤ n0
.

Solving this recursion yields e(n) ≤ Kn, where K is a constant that depends only on
n0 and d. Therefore we obtained a super concentrator with O(n) edges as required.

A word about algorithms to construct such graphs: Suppose that we have an
algorithm which constructs magical graphs of left size n in time t(n). It should be
clear that the above recursive construction yields an algorithm that constructs a
super concentrator with input/output size n in time O(t(n)).

Finally, we note that super concentrators are but one example among a host of
network construction problems in which expanders serve as a key building block.



450 SHLOMO HOORY, NATHAN LINIAL, AND AVI WIGDERSON

These include the celebrated AKS sorting network [AKS83], and the variety of com-
munication and computation networks which appear in [WZ93] and its extensive
list of references.

1.3.2. Construction of good error correcting codes. We now turn to Shannon’s prob-
lem concerning communicating over a noisy channel and present a solution due to
Sipser and Spielman [SS96]. We observe a simple but useful property of magical
graphs. Let G be such a graph with n left vertices and 3n/4 right vertices. We show
that for every nonempty S ⊂ L with s = |S| ≤ n

10d there exists a vertex u ∈ R with
exactly one neighbor in S, namely, |Γ(u)∩S| = 1. To see this, consider e(S, Γ(S)),
the number of edges between S and Γ(S). Clearly, e(S, Γ(S)) = d · |S| = ds. On
the other hand, since Γ(S) ≥ 5ds/8, the average number of neighbors in S that a
vertex in Γ(S) has is at most 8/5 < 2. But every vertex in Γ(S) has at least one
neighbor in S, so there must be some (indeed, many) vertices in Γ(S) with exactly
one neighbor in S.

We use the magical graph G to construct a code C ⊂ {0, 1}n with rate at
least 1/4 and distance at least 1/10d. To this end, represent the magical graph
G = (R, L, E) by a matrix A with row set R and column set L, where aij equals 1
or 0 depending on whether or not the i-th vertex in R is adjacent to the j-th vertex
in L. The code is defined as the right kernel of A, viz. C = {x ∈ {0, 1}n |Ax = 0}.
(Here calculations are done over the field with two elements.) Clearly C is a linear
subspace of {0, 1}n of dimension ≥ n/4. Hence |C| ≥ 2n/4, yielding the claimed
lower bound on the code’s rate.

To prove a lower bound on the distance, first observe that since C is a linear
code (i.e. a linear subspace of {0, 1}n) the smallest distance between two of its
codewords equals the smallest weight of a nonzero codeword. Let x �= 0 be an n-bit
vector with support S = {j ∈ L : xj = 1}. If |S| < n

10d , then, as we saw, there is
some i ∈ R with |Γ(i) ∩ S| = 1. It follows that the i-th coordinate in Ax is 1, and
so x is not in the right kernel of A and cannot be a codeword. It follows that the
normalized distance of C is at least 1/10d.

The above construction is a special case of a so-called LDPC (for Low Density
Parity Check) code. This idea was first suggested by Gallager [Gal63] and has
inspired (among many others) the works by Bassalygo, Pinsker and Margulis [Pin73,
BP73, Mar73], the first to explicitly define expander graphs and construct them.
After being nearly dormant for about 20 years, LDPC codes regained prominence
in the 90’s and are now believed to give simultaneously the best coding parameters
as well as best algorithmic performance in various settings. For a survey of this
fascinating field, see Richardson and Urbanke [RU].

Only fairly recently [CRVW02] did the art of explicit constructions of expanding
graphs reach the level that makes the above simple argument feasible. It should
also be mentioned that this construction not only yields codes with linear distance
but also linear time iterative decoding. We will review these “lossless expanders”
in Section 10.

As in the previous application, the time complexity of constructing the magical
graph dominates the time to construct the (parity check matrix of the) appropriate
code. This is yet another reason to seek efficient algorithms to construct these
graphs. The next application calls for an even more concise and efficient description
of these graphs.
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1.3.3. Deterministic error amplification for RP. Our last problem revolves around
deciding membership in a language L ∈ RP, with a given bound on the algo-
rithm’s error probability. The solution we present is due to Karp, Pippenger, and
Sipser [KPS85]. It carries out dependent sampling of random strings using magi-
cal graphs.

As we explained above, we have to decide whether a given k-bit string x belongs
to L or not. By assumption, there is a polytime algorithm that upon receiving
x and a random k-bit string r calculates a function f(x, r) such that f(x, r) = 1
whenever x ∈ L, but f(x, r) = 1 with probability at most 1/16 (the probability is
over the choice of r) when x /∈ L.

To reduce the probability of error we will be considering several strings r. How-
ever, our goal is to reduce the failure probability below some set threshold while
we utilize as few such strings r as possible. In other words, fix some x /∈ L and let
B = {r ∈ {0, 1}k | f(x, r) = 1} be the set of strings r that are “bad” in that they
fail on input x. We would like to make it as likely as possible that at least one of
the r’s we consider lies outside of B. The only information we have about the set
B ⊆ {0, 1}k is that it is not too big, |B| ≤ n/16 where n = 2k.

For any given integer d, we offer an algorithm for the membership problem that
evaluates f only d times and fails with probability ε ≤ 1

10d . The algorithm is rather
simple. Fix an (n, n; d)-magical graph G = (L, R, E) with n = 2k, where each
vertex in R and each vertex in L is associated with a unique k-bit string. To decide
whether a given x is in L, sample a k-bit string r which may be considered as a
vertex in L. Let r1, . . . , rd ∈ R be the (strings associated with) the d neighbors of
r. The algorithm outputs 1 iff f(x, r1) = f(x, r2) = . . . = f(x, rd) = 1.

Clearly this algorithm fails iff x /∈ L and r1, . . . , rd ∈ B, i.e. Γ(r) ⊆ B. Let
S ⊂ L be the set of left vertices that satisfy this condition (so we fail iff r ∈ S).
Clearly Γ(S) ⊆ B. But we must have |S| ≤ n

10d or else we get a contradiction:
|B| ≥ |Γ(S)| > (5d/8)(n/10d) ≥ n/16 (this is the moment of magic here...). This
upper bound on |S| means that we fail with probability at most 1

10d while using
only the original k random bits. We can reduce the probability of error arbitrarily
by increasing d appropriately. A key point is that we have reached this reduction
in error probability without using any additional random bits.

Here are a few comments on this algorithm.
Unlike the previous two examples, the size n of the graph used is exponential in

the natural size of the problem considered (the parameter k here). This means that
for an efficient implementation of the new algorithm, our encoding of the magical
graph must be much more efficient than in the previous applications. Specifically,
given the name of a vertex (a k-bit string), we must be able to generate its d
neighbors in time poly(k), which is far smaller than the size of the graph. We will
later see that even this level of “explicitness” is achievable.

Next, with the d (dependent) samples used here, we can reduce the error to
O(1/d). This is much inferior to the exponential decay of the error as a function
of d when we “waste” random bits and make d independent samples. We will later
see that (other) dependent sampling via expanders (which uses only a few more
random bits than the solution above) can achieve such an exponential decay as
well.

Another comment concerns the 1-sided errors. Many probabilistic algorithms err
both on inputs in the language L and those outside it, and the above amplification
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does not work as stated. However, we will later see that an appropriate modification
of dependent sampling via expanders can achieve nearly optimal error reduction in
such situations as well.

These problems and results have developed into a whole subfield of Theoretical
Computer Science called Randomness Extraction. Two excellent surveys of these
issues are [Gol97] and [Sha04].

2. Graph expansion and eigenvalues

2.1. Edge expansion and a combinatorial definition of expanders. Let us
introduce some conventions now. Unless we say otherwise, a graph G = (V, E)
is undirected and d-regular (all vertices have the same degree d; that is each
vertex is incident to exactly d edges). Self loops and multiple edges are allowed.
The number of vertices |V | is denoted by n. Unlike the previous section, graphs
need not be bipartite. For S, T ⊂ V , denote the set of edges from S to T by
E(S, T ) = {(u, v)|u ∈ S, v ∈ T, (u, v) ∈ E}. Here we think of every undirected edge
as a pair of directed edges, so E(S, T ) is a set of directed edges. It will also be
convenient to define E(S) as the set of edges for which both vertices belong to S.

Definition 2.1.
(1) The Edge Boundary of a set S, denoted ∂S, is ∂S = E(S, S). This is the

set of edges emanating from the set S to its complement.
(2) The (edge) Expansion Ratio of G, denoted h(G), is defined as:

h(G) = min
{S | |S|≤n

2 }

|∂S|
|S| .

There are two important avenues for extending this definition. The first is in
considering different notions of boundary. The most notable is vertex expansion,
where we count the number of neighboring vertices of vertex sets S rather than the
number of outgoing edges. See Sections 4 and 10 for more on this. The second av-
enue,proceeds to explore expansion as a function of the set size. See subsection 4.6.

Definition 2.2. A sequence of d-regular graphs {Gi}i∈N of size increasing with i
is a Family of Expander Graphs if there exists ε > 0 such that h(Gi) ≥ ε for
all i.

Issues concerning the explicit construction of mathematical objects are fun-
damental to all of computer science, and expander graphs are no exception. There
are two natural levels of efficiency to be considered in the construction of such
graphs, which we have already seen in the examples of the previous section. In the
first we require that an n-vertex graph should be generated “from scratch” in time
polynomial in n. In the stronger version we demand that the neighborhood of any
given vertex should be computable in time that is polynomial in the description
length of the vertex (usually polynomial in log n).

The technicalities of these definitions may seem odd to the uninitiated reader,
but they reflect a very natural need. Expander graphs are to be used by various
algorithms. The algorithms’ performance will depend on efficiently obtaining the
relevant information of the expanders being used.
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Definition 2.3. Let {Gi}i be a family of expander graphs where Gi is a d-regular
graph on ni vertices and the integers {ni} are increasing, but not too fast (e.g.
ni+1 ≤ n2

i will do).

(1) The family is called Mildly Explicit if there is an algorithm that generates
the j-th graph in the family Gj in time polynomial in j. (That is, Gj is
computed in time < AjB for some constants A, B > 0.)

(2) The family is called Very Explicit if there is an algorithm that on input
of an integer i, a vertex v ∈ V (Gi) and k ∈ {1, · · · , d} computes the k-th
neighbor of the vertex v in the graph Gi. This algorithm’s run time should
be polynomial in its input length (the number of bits needed to express the
triple (i, v, k)).

2.2. Examples of expander graphs.

(1) A family of 8-regular graphs Gm for every integer m. The vertex set
is Vm = Zm × Zm. The neighbors of the vertex (x, y) are (x + y, y),
(x−y, y), (x, y+x), (x, y−x), (x+y+1, y), (x−y+1, y), (x, y+x+1), (x, y−
x + 1), (all operations are mod m).

This family of graphs, due to Margulis [Mar73], is the first explicitly
constructed family of expander graphs. Margulis’ proof of expansion was
based on representation theory and did not provide any specific bound on
the expansion ratio h. Gabber and Galil [GG81] later derived such a bound
using harmonic analysis. In Section 8 we show that Margulis’ graphs are
expanders. Note that this family is very explicit.

(2) A family of 3-regular p-vertex graphs for every prime p. Here Vp = Zp, and
a vertex x is connected to x + 1, x − 1, and to its inverse x−1 (operations
are mod p, and we define the inverse of 0 to be 0).

Here, the proof of expansion depends on a deep result in Number Theory,
the Selberg 3/16 theorem; see the discussion in subsection 11.1.2 for more
details. This family is only mildly explicit, since we are at present unable
to generate large primes deterministically. See [Gra05] for a survey of the
Agrawal-Kayal-Saxenaan polytime primality testing algorithm.

2.3. Graph spectrum and an algebraic definition of expansion. The Ad-
jacency Matrix of an n-vertex graph G, denoted A = A(G), is an n × n matrix
whose (u, v) entry is the number of edges in G between vertex u and vertex v.
Being real and symmetric, the matrix A has n real eigenvalues which we denote
by λ1 ≥ λ2 ≥ · · · ≥ λn. We can also associate with it an orthonormal system
of eigenvectors v1, . . . , vn with Avi = λivi. We often refer to the eigenvalues of
A(G) as the Spectrum of the graph G. The spectrum of a graph encodes a lot of
information about it. Here are some simple illustrations of how certain properties
of a d-regular graph are reflected in its spectrum:

• λ1 = d, and the corresponding eigenvector is v1 = 1/
√

n = (1/
√

n, . . . ,
1/
√

n).
• The graph is connected iff λ1 > λ2.
• The graph is bipartite iff λ1 = −λn.

As seen in the next theorem, the graph’s second eigenvalue is closely related to its
expansion parameter.
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Theorem 2.4. Let G be a d-regular graph with spectrum λ1 ≥ · · · ≥ λn. Then

d − λ2

2
≤ h(G) ≤

√
2d(d − λ2).

This theorem is due to Cheeger [Che70] and Buser [Bus82] in the continuous
case (see Section 4 for more on this). In the discrete case, it was proved by Dodz-
iuk [Dod84] and independently by Alon-Milman [AM85] and by Alon [Alo86]. More
concretely we see that d − λ2, also known as the Spectral Gap, provides an esti-
mate on the expansion of a graph. In particular, a d-regular graph has an expansion
ratio h(G) bounded away from zero iff its spectral gap d−λ2 is bounded away from
zero. The following lemma shows that a small second eigenvalue in a graph implies
that its edges are “spread out”, a hallmark of random graphs.

2.4. The Expander Mixing Lemma. Given a d-regular graph G with n vertices,
we denote λ = λ(G) = max(|λ2|, |λn|). In words, λ is the largest absolute value of
an eigenvalue other than λ1 = d. The following useful bound, observed by several
researchers, probably appeared in print first in [AC89].

Lemma 2.5 (Expander Mixing Lemma). Let G be a d-regular graph with n vertices
and set λ = λ(G). Then for all S, T ⊆ V :∣∣∣∣ |E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T |.

A word of interpretation is in place here. The left-hand side measures the de-
viation between two quantities: one is |E(S, T )|, the number of edges between the
two sets; the other is the expected number of edges between S and T in a random
graph of edge density d/n, namely d|S||T |/n. A small λ (or large spectral gap)
implies that this deviation (or discrepancy as it is sometimes called) is small, so
the graph is nearly random in this sense.

When the spectral gap of G is much smaller than d, the upper and lower bounds
in Theorem 2.4 differ substantially. This makes one wonder whether the spectral
gap can be captured more tightly by some combinatorial invariant of the graph. A
positive answer, and a converse to the Expander Mixing Lemma, was found recently
by Bilu and Linial [BL]. We will not prove this result here.

Lemma 2.6 (Converse of the Expander Mixing Lemma [BL]). Let G be a d-regular
graph and suppose that∣∣∣∣ |E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ ρ
√
|S||T |,

holds for every two disjoint sets S, T and for some positive ρ. Then λ ≤ O(ρ · (1 +
log(d/ρ))). The bound is tight.

Proof of the Expander Mixing Lemma. Let 1S and 1T be the characteristic vectors
of S and T (i.e., the v-th coordinate of the vector 1S is 1 if v ∈ S and zero otherwise).
Expand these vectors in the orthonormal basis of eigenvectors v1, · · · , vn, viz., 1S =
Σiαivi and 1T = Σjβjvj . Recall that v1 = 1/

√
n. Then

|E(S, T )| = 1SA1T = (Σiαivi)A(Σjβjvj).
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Since the vi are orthonormal eigenvectors, this equals Σiλiαiβi. Since α1 = 〈1S , 1√
n
〉

= |S|√
n
, β1 = |T |√

n
, and λ1 = d:

|E(S, T )| = d
|S||T |

n
+ Σn

i=2λiαiβi.

By the definition of λ:∣∣∣∣ |E(S, T )| − d
|S||T |

n

∣∣∣∣ = |Σn
i=2λiαiβi| ≤ Σn

i=2|λiαiβi| ≤ λΣn
i=2|αiβi|.

Finally, by Cauchy-Schwartz:∣∣∣∣ |E(S, T )| − d
|S||T |

n

∣∣∣∣ ≤ λ‖α‖2‖β‖2 = λ‖1S‖2‖1T ‖2 = λ
√
|S||T |. �

In what follows, it is sometimes convenient to consider the normalized second
eigenvalue λ(G)/d. A d-regular graph G on n vertices is called an (n, d)-graph. It
is an (n, d, α)-graph if λ(G) ≤ αd. Regular graphs with small α have a number of
significant properties, some of which we collect below:

• An independent set in a graph is a set of vertices S, no two of which are
adjacent, i.e. with |E(S, S)| = 0. It is an immediate consequence of the
Expander Mixing Lemma that an independent set in an (n, d, α)-graph has
cardinality at most αn.

• A k-coloring of a graph G = (V, E) is a mapping c : V → {1, . . . , k},
such that c(x) �= c(y) for any two adjacent vertices x, y. The chromatic
number of G, denoted χ(G), is the smallest k for which G has a k-coloring.
The set c−1(j) is an independent set in G for every k ≥ j ≥ 1. Consequently,
χ(G) ≥ 1/α for an (n, d, α)-graph G.

• The distance dG(x, y) between vertices x and y in a graph G = (V, E)
is the length of the shortest path between them. The diameter of G is
defined as maxx,y dG(x, y). Also B(x, r) = {y|dG(x, y) ≤ r} is the ball
of radius r around x. We claim that an (n, d, α)-graph G has diameter
O(log n). That certainly follows if we show that |B(x, r)| > n/2 for every
vertex x and some r ≤ O(log n). This in turn follows from the expansion
properties of G. That is, we show that |B(x, r + 1)| ≥ (1 + ε)|B(x, r)| for
some fixed ε > 0 as long as |B(x, r)| ≤ n/2. The Expander Mixing Lemma
implies that |E(S, S)|/|S| ≤ d · (|S|/n + α) for every set S. Therefore,
|E(S, S)|/|S| ≥ d·((1−α)−|S|/n). But S has at least |E(S, S)|/d neighbors
outside itself, so the claim follows with ε = 1/2 − α.

2.5. How big can the spectral gap be? The question in the title has to be
qualified, since the answer depends on the relationship between d and n. We are
mostly interested in d fixed and large n. To illustrate how things may differ when
d grows with n, consider the complete graph on n vertices Kn where every two
vertices are adjacent and so d = n− 1. Clearly the adjacency matrix of Kn is J − I
where J is the all-ones matrix and I = In is the identity matrix. The spectrum of
Kn is [n − 1,−1,−1, · · · ,−1]. and λ = 1.

For the range we are interested in, n � d, the question was answered by N. Alon
and R. Boppana (see A. Nilli [Nil91]):
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Theorem 2.7 (Alon-Boppana). For every (n, d)-graph,

λ ≥ 2
√

d − 1 − on(1).

The on(1) term is a quantity that tends to zero for every fixed d as n → ∞.
More on this and a proof of this theorem appear in Section 5. Here is a very easy
but somewhat weaker statement:

Claim 2.8. For every (n, d)-graph G,

λ ≥
√

d · (1 − on(1)).

Proof. Let A be the adjacency matrix of G. It is not hard to see that trace(Ak) is
the number of all walks of length k in G that start and end in the same vertex. In
particular, all the diagonal entries in A2 are ≥ d. (Just move back and forth along
any edge incident to the vertex in question.) Consequently, trace(A2) ≥ nd. On
the other hand,

trace(A2) =
∑

i

λ2
i ≤ d2 + (n − 1)λ2.

It follows that λ2 ≥ d · n−d
n−1 , as claimed. �

2.6. Four perspectives on expansion and how they compare. We are now
in a position to offer the reader a broader view of some of the main questions in
the field. Expansion is defined in combinatorial terms and, as we shall see, this
definition comes in several different flavors. This is closely related to the spectral
theory of graphs. Finally, rapidly mixing random walks provide a probabilistic
perspective.

In each of these three frameworks we consider mostly four types of questions:

• Extremal: How large/small can the pertinent expansion parameters be?
• Typical: How are these parameters distributed over random graphs?
• Explicit construction: Can one construct graphs for which these param-

eters (nearly) attain their optimum?
• Algorithmic: Given a graph, can you efficiently evaluate/estimate its

expansion parameters?

It then becomes natural to consider some comparative problems: What can
you conclude, say, about combinatorial-type expansion parameters from spectral
information, etc.?

Here are some pointers to the present article where we either explain what is
known about such question or provide some further references to the relevant lit-
erature.

2.6.1. Extremal problems. Here the most satisfactory answer comes from the spec-
tral realm. The Alon-Boppana Theorem 5.3 tells us precisely how large the spectral
gap can be in an (n, d)-graph.

The largest edge expansion h(G) of an (n, d)-graph G is at most d/2 − c
√

d for
every d ≥ 3 and sufficiently large n, where c > 0 is an absolute constant. This
result is tight up to the value of c; see subsection 5.1.1. More interesting (and often
more difficult) questions concern the expansion of smaller sets in the graph. Some
discussion of this problem is to be found in Section 5 and subsection 4.6.



EXPANDER GRAPHS AND THEIR APPLICATIONS 457

2.6.2. Typical behavior. Here the situation reverses. It is relatively not hard to
analyze the (vertex/edge) expansion in random graphs by methods similar to those
used in subsection 1.2. See subsection 4.6 for more details.

The typical behavior of the spectrum is harder to understand, and Section 7 is
dedicated to an exposition of this fascinating story and the still lingering mysteries.

2.6.3. Explicit constructions. We have already mentioned the Margulis construc-
tion to which Section 8 is dedicated. The so-called Ramanujan Graphs due to
Lubotzky-Phillips-Sarnak [LPS88] and Margulis [Mar88] are mentioned briefly in
subsection 5.3, but are otherwise not discussed at depth here. We do survey some
more combinatorial approaches to the problem, viz. subsection 6.4 and Section 11.

Direct estimates of the expansion, even for specific families of graphs, are even
harder to come by and [LL06] is one of very few exceptions. In fact, the following
question is quite nontrivial: Find explicit constructions of graphs in which small
sets of vertices expand well. We will have quite a bit to say about this problem in
Section 10.

2.6.4. Algorithms. The exact determination of h(G), given G, is difficult (co-NP-
hard) [BKV81]. This fact and the approximate version of the problem are briefly
discussed in subsection 13.5. Likewise, we lack good estimates for the vertex isoperi-
metric parameter of a given graph or for the edge expansion of sets of a given size
in a graph. These are among the most significant open questions in the theory.
On the other hand, standard algorithms in linear algebra can be used to efficiently
compute the spectrum of a given graph. For the analogous problem in the context
of random walks see subsection 3.1.2.

2.6.5. Comparisons. As mentioned above, for random graphs, expansion is more
accessible than spectral gap. On the other hand, eigenvalues are easily computable,
while expansion is not. It is interesting to ask how well one theory reflects on the
other when we seek (nearly) optimal graphs. Graphs with very large spectral gap
are very good expanders: When λ = o(d), the lower bound in Theorem 2.4 yields
h(G) ≥ ( 1

2 − o(1))d. On the other hand, for d large, an (n, d)-graph G can have
h(G) ≥ Ω(d) while the spectral gap is small. Here is an illustration of how this can
happen: Pick a small δ > 0 and construct an (n, (δ·d))-graph G with h(G) = Ω(δ·d).
Now add to it a collection of disjoint cliques of size (1− δ)d + 1 each. Clearly h(G)
does not decrease, but the spectral gap is at most δd.

Another interesting example can be obtained by considering the line graph H of
an (n, d)-graph G that is a good expander. The vertex set of H is the edge set of
G, and two vertices in H are adjacent iff the corresponding edges are incident in
G. The graph H is an (nd

2 , 2d− 2)-graph. Its second eigenvalue is easily seen to be
≥ (1 − o(1))d, but if G has a large expansion ratio, then so does H.

Finally, we mention that Lemma 2.6 shows the near equivalence of discrepancy
and spectral gap.

Connections with rapid mixing of random walks are discussed in subsection 3.1.



458 SHLOMO HOORY, NATHAN LINIAL, AND AVI WIGDERSON

3. Random walks on expander graphs

A key property of the random walk on an expander graph is that it converges
rapidly to its limit distribution. This fact has numerous important consequences at
which we can only hint. In many theoretical and practical computational problems
in science and engineering it is necessary to draw samples from some distribution
F on a (usually finite but huge) set V . Such problems are often solved by so-called
“Monte-Carlo” algorithms. One considers a graph G on vertex set V so that the
limit distribution of the random walk on G is F . A clever choice of G can guarantee
that (i) it is feasible to efficiently simulate this random walk and (ii) the distribution
induced on V by the walk converges rapidly to F . Among the fields where this
methodology plays an important role are Statistical Physics, Computational Group
Theory and Combinatorial Optimization. We should mention approximation algo-
rithms for the permanence of nonnegative matrices [JSV04] and for the volume of
convex bodies in high dimension [Sim03] as prime examples of the latter. Excellent
surveys on the subject are [JS96, Jer03]. As we briefly mention in subsection 4.5,
some of this theory extends to the more general context of time-reversible Markov
Chains [LW98, MT].

The main principle behind the topics we survey here is that the set of vertices
visited by a length t random walk on an expander graph “looks like” (in some
respects) a set of t vertices sampled uniformly and independently. The compu-
tational significance of this is that the number of random bits required in order
to generate a length t walk on a (constant-degree) graph is significantly smaller
than the number of random bits that are needed in order to independently sample
t random vertices. We exhibit two applications of this idea: (i) a randomness-
efficient error reduction procedure for randomized algorithms, and (ii) a strong
hardness-of-approximation result for the maximum clique problem. Other compu-
tational applications of these ideas that we will not go into include derandomization
of probabilistic space-bounded algorithms (see e.g. Nisan-Zuckerman [NZ96] and
Impagliazzo-Nisan-Wigderson [INW94]).

3.1. Rapid mixing of walks. A walk on a graph G = (V, E) is a sequence of
vertices v1, v2, . . . ∈ V such that vi+1 is a neighbor of vi for every index i. When
vi+1 is selected uniformly at random from among vi’s neighbors, independently for
every i, this is called a random walk on G. We usually initiate this random process
by selecting the first vertex v1 from some initial probability distribution π1 on
V . Clearly this induces a sequence of probability distributions πi on V so that the
probability that vi = x ∈ V equals πi(x) for every i and x. It is well known that
for every finite connected nonbipartite graph G, the distributions πi converge to a
limit, or stationary, distribution. Moreover, it is easy to see that if G is regular,
then this distribution is the uniform distribution on V .

This subsection deals with the speed of this convergence. There are several
interesting ways to measure the distance between πi and the limit distribution, and
we will consider several norms and entropy measures. The main thrust is that in
expanders the distance to the limit shrinks substantially with every step of the
random walk and that this condition characterizes expander graphs. We now make
this statement quantitative. We start with some definitions and notations.
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Recall that an (n, d)-graph is a d-regular graph G on n vertices. It is called an
(n, d, α)-graph if |λ2(G)|, |λn(G)| ≤ αd, where d = λ1(G) ≥ . . . ≥ λn(G) is the
spectrum of G.

A vector p ∈ Rn is called a probability distribution vector if its coordinates
are nonnegative and

∑n
i=1 pi = 1. The probability vector that corresponds to the

uniform distribution on {1, . . . , n} is denoted by u = (1, . . . , 1)/n. In this section
we show that a random walk on the vertices of an expander converges rapidly to
the stationary distribution.

Definition 3.1. A random walk on a finite graph G = (V, E) is a discrete-time
stochastic process (X0, X1, . . .) taking values in V . The vertex X0 is sampled from
some initial distribution on V , and Xi+1 is chosen uniformly at random from the
neighbors of Xi.

If G is a d-regular graph with adjacency matrix A, then its normalized adjacency
matrix is defined as Â = 1

dA. Here are some simple comments on this random walk.
• The random walk on G = (V, E) is a Markov Chain with state set V and

transition matrix Â.
• Â is real, symmetric, and doubly stochastic; i.e. every column and every

row sums up to 1.
• If λ̂1 ≥ · · · ≥ λ̂n are the eigenvalues of Â, then λ̂1 = 1 and max{|λ̂2|, |λ̂n|} ≤

α.
• The corresponding eigenvectors are the same eigenvectors of A.
• Consider an experiment where we sample a vertex x from some probability

distribution p on V and then move to a random neighbor of x. This is
equivalent to sampling a vertex from the distribution Âp.

• The matrix Ât is the transition matrix of the Markov Chain defined by
random walks of length t. In other words (Ât)ij is the probability a random
walk starting at i is at j after t steps.

• The stationary distribution of the random walk on G is the uniform distri-
bution, namely, uÂ = Âu = u. (This uses the symmetry of Â.)

3.1.1. Convergence in the l1 and l2 norms. The inner product of x,y ∈ Rn is
denoted by 〈x,y〉 =

∑n
i=1 xiyi. The l1, l2 and l∞ norms are denoted as usual by

• ||x||1 =
∑n

i=1 |xi|,
• ||x||2 =

√
〈x,x〉 =

√∑n
i=1 x2

i ,
• ||x||∞ = max1≤i≤n |xi|.

We now observe that if G is an (n, d, α)-graph and α < 1, then regardless of
the initial distribution p, the random walk converges in l1 exponentially fast to its
limit (uniform) distribution. This will follow (via Cauchy-Schwartz) from a similar
bound on l2, which in turn follows from the fact that in l2 the distance to the
uniform distribution shrinks by a factor of α at each step.

Theorem 3.2. Let G be an (n, d, α)-graph with normalized adjacency matrix Â.
Then for any distribution vector p and any positive integer t:

||Âtp − u||1 ≤
√

n · αt.

Why use the l1 norm to measure for the distance between two probability distri-
butions p, q? A natural and commonly used metric is the total variation distance
maxB |Prp[B]−Prq[B]|, and it is not difficult to check that this equals 1

2 ||p− q||1.
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In other words, if the l1 distance is small, then the two distributions p and q assign
nearly equal probabilities to every event in the probability space. Theorem 3.2
follows immediately from the analogous l2 bound below.

Theorem 3.3. Let G be an (n, d, α)-graph with normalized adjacency matrix Â.
Then for any distribution vector p and any positive integer t:

||Âtp − u||2 ≤ ||p − u||2αt ≤ αt.

Obviously it suffices to prove this bound for t = 1 (shrinkage per step) and use
induction.

Lemma 3.4. For every probability vector p, ||Âp − u||2 ≤ α||p − u||2 ≤ α.

Proof. The uniform distribution u is invariant under the action of Â. Also, p − u
is orthogonal to u and thus shrinks in l2-norm by a factor α under the action of Â.
Consequently

||Âp − u||2 = ||Â(p− u)||2 ≤ α||p − u||2 ≤ α,

where the last inequality follows easily from the fact that p is a probability distri-
bution. �
3.1.2. Convergence in entropy. Another important perspective of a random walk
is offered by the entropy of the associated probability distributions. The entropy
of probability distributions is a fundamental concept in the theory of communica-
tion, capturing the amount of “information”, or alternatively “uncertainty”, that it
carries. When we take a random step, we “inject” more randomness into our distri-
bution, indeed precisely the log d random bits that are needed to specify which of
the d neighbors of the current vertex we move to next. One expects this injection
to increase the amount of “randomness” in the distribution, namely its entropy.
This is indeed always true in every regular graph, and expanders are those graphs
for which the increase is significant.

This entropy viewpoint will be extremely important when we explain the zig-
zag product and its use in combinatorial constructions of various expanders in
Sections 9 and 10. In the same way that different norms capture different aspects
of the probability distributions, there are several variations on the theme of entropy
that do this. Let [n] denote the set of integers {1, . . . , n}. Then for a probability
distribution p on [n] we define:

• Shannon entropy: H(p ) = −
∑n

i=1 pi log(pi).
• Rényi 2-entropy: H2(p ) = −2 log(||p ||2).
• Min entropy: H∞(p ) = − log(||p ||∞).

To see the connection between the last two quantities, note that if p is a proba-
bility distribution on [n], then max pi ≥

∑
p2

i ≥ max p2
i . It follows that:

Proposition 3.5.
H∞(p ) ≤ H2(p ) ≤ 2H∞(p ).

Here are some simple and useful properties that are common to all three, which
the reader is invited to verify. As above, p is a probability distribution on an
n-element set, and we denote a “generic” entropy by H̃ .

• H̃(p ) ≥ 0 with equality iff the distribution is concentrated on a single
element.

• H̃(p ) ≤ log n with equality iff the distribution is uniform.
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• For any doubly stochastic matrix X (nonnegative matrix whose row and
column sums are one), H̃(Xp ) ≥ H̃(p ). Equality holds iff p is uniform.

The last item shows that entropy increases with every step of the random walk
on a regular graph. Making this quantitative depends on the choice of entropy
measure. Below we do so for the Rényi 2-entropy in terms of the spectral bound
α, which (not surprisingly) is just a restatement of the l2 bound from the previous
section. However, as noted above H2 and H∞ are very close to each other, and it
is the latter we use in Section 10, so this interpretation will be important for us.

Before doing so, we remark that for Shannon entropy H, the precise relation
between the increase in H and the spectral constant α is still unknown. However,
one can define an analogous “entropy constant” which governs the increase “per
step” in entropy. It is called the Log-Sobolev constant, and there are known quan-
titative relations between it and and the spectral constant (much like the relations
between edge expansion and the spectral constant of the previous section). Using
the Log-Sobolev constant to analyze the mixing time of random walks is a powerful
method, but it is beyond the scope of this survey. For more on this, see e.g. [MT].

Let us write the distribution as p = u + f , where f ⊥ u. We let µ capture how
close p is to the uniform distribution, via µ = ‖f ‖/‖p ‖ ≤ 1 (e.g. µ = 0 iff p is
uniform). Then

‖Âp ‖2 = ‖u + Âf ‖2 = ‖u ‖2 + ‖Âf ‖2 ≤ ((1 − µ2) + α2µ2)‖p ‖2.

Hence

H2(Âp ) ≥ H2(p ) − log((1 − µ2) + α2µ2) = H2(p ) − log(1 − (1 − α2)µ2).

It follows that the 2-entropy never decreases and is, in fact, strictly increasing as
long as the distribution p is not uniform. It is also clear that for better expanders
(i.e., for smaller α) the 2-entropy grows faster.

3.2. Random walks resemble independent sampling. In the sequel, we imag-
ine an abstract sampling problem in which an unknown set B in a universe of size
n is “bad” in some sense, and we try to sample the universe so as to avoid the
bad set as much as possible. Our task will be to do so, minimizing the number
of random bits used. In a motivating example we saw already that set B includes
all the bad random choices for a probabilistic algorithm, namely, those choices for
which it gives the wrong answer. We now describe the advantages of imposing, out
of the blue, an expander graph structure on the universe. Using it, we can choose
a small sample using a random walk on the graph. Remarkably, the statistics of
hitting B with such a (highly dependent) sample will be very close to that of a
completely independent sample (provided we pick the degree and expansion of the
graph appropriately).

Suppose that we are given an (n, d, α)-graph G = (V, E) where the vertices in
some subset B ⊆ V are “bad”. All we know about the set B is its cardinality |B| =
βn. We wish to sample at least one vertex outside of B. We can certainly sample,
uniformly at random, t + 1 vertices x0, . . . , xt from V , and fail with probability
Pr[∀i xi ∈ B] ≤ βt+1. This approach uses (t + 1) log n random bits, and we will
show that a similar performance can be achieved with substantially fewer random
bits: namely, that if we choose a random starting vertex and carry out a random
walk of length t from it, then our chance of failure, i.e., the probability that the
whole random walk is confined to B, is exponentially small in t as well. To get
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started, let us reinterpret the Expander Mixing Lemma as the case t = 1 of this
approach. Recall that the lemma says that:∣∣∣∣d|S||T |

n
− |E(S, T )|

∣∣∣∣ ≤ αd
√
|S||T | ≤ αdn,

for every two subsets S, T ⊆ V (G) in an (n, d, α)-graph G. It is useful to rewrite
this as: ∣∣∣∣ |S||T |

n2
− |E(S, T )|

dn

∣∣∣∣ ≤ α.

Now consider two experiments in which we sample an ordered pair of vertices (i, j) in
G, and consider it a success if i ∈ S and j ∈ T . In the first version of this experiment
both vertices are selected uniformly at random from V = V (G), so our probability
of success is |S||T |/n2. In the second version we randomly pick i ∈ V , and then j
is selected uniformly among the neighbors of i. In this version of the experiment,
the probability of success is |E(S, T )|/dn. The Expander Mixing Lemma says that
despite the different nature of the sample spaces in the two experiments, their
success probabilities differ only by a small constant α. We now turn to the complete
argument that pertains to longer random walks.

Let G = (V, E) be an (n, d, α)-graph, and B ⊂ V of cardinality |B| = βn. We
carry out the following experiment: We pick X0 ∈ V uniformly at random and
start from it a random walk X0, . . . , Xt on G. Denote by (B, t) the event that this
random walk is confined to B, i.e. that ∀i Xi ∈ B.

Theorem 3.6 (Ajtai-Komlós-Szemerédi [AKS87], Alon-Feige-Wigderson-Zucker-
man [AFWZ95]). Let G be an (n, d, α)-graph and B ⊂ V with |B| = βn. Then the
probability of the event (B, t) is bounded by

Pr[(B, t)] ≤ (β + α)t.

Let P = PB be the orthogonal projection on the subspace of coordinates belong-
ing to B. In matrix notation Pij = 1 if i = j ∈ B and 0 otherwise. We need the
following simple observation:

Lemma 3.7. The probability of event (B, t) is given by Pr[(B, t)] = ||(PÂ)tPu||1.
Proof. To calculate the (x, y) entry in the matrix (Â)t, we should sum the probabil-
ities of walks of length t that start at vertex x and end at y. In the same calculations
for the matrix (PÂ)tP only walks confined to B are to be considered, since all other
contributions are eliminated by the matrices P in the product. But ||(PÂ)tPu||1
is just 1

n of the total sum of these entries and the conclusion follows. �
We also need the following lemma.

Lemma 3.8. For any vector v,

||PÂPv||2 ≤ (β + α) · ||v||2.
Proof. First note that there is no loss in assuming that v is supported on B, i.e.
Pv = v. Otherwise we may replace v by Pv. This leaves the left-hand side
unchanged and does not increase the right-hand side, since P is a contraction in l2.
Similarly, we may assume that v is nonnegative. Also, by linearity of both sides we
may assume that

∑
vi = 1 and so v can be expressed as: Pv = v = u + z where z

is orthogonal to u. It follows that

PÂPv = PÂu + PÂz = Pu + PÂz
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and hence
||PÂPv||2 ≤ ||Pu||2 + ||PÂz||2.

We now prove that ||Pu||2 ≤ β · ||v||2 and ||PÂz||2 ≤ α · ||v||2, which together
imply the claim.

Since
∑

vi = 1, and the support of v has at most βn coordinates, Cauchy-
Schwartz yields 1 =

∑
vi ≤

√
βn · ||v||2. But, since ||Pu||2 =

√
β/n, we obtain

||Pu||2 ≤ β · ||v||2.

As for the other term, ||Âz||2 ≤ α||z||2, since z is orthogonal to u and therefore
is a combination of eigenvectors of Â with eigenvalues ≤ α. But ||PÂz||2 ≤ ||Âz||2,
since P is a contraction in l2. Also v is the sum of z and the orthogonal vector u,
whence ||z||2 ≤ ||v||2. It follows that ||PÂz||2 ≤ α · ||v||2, as needed. �

Now we use the two lemmas to prove Theorem 3.6.

Proof. (Theorem 3.6)

||(PÂ)tPu||1 ≤
√

n · ||(PÂ)tPu||2
=

√
n · ||(PÂP )tu||2

≤
√

n · (β + α)t||u||2
= (β + α)t. �

The probability that t+1 uniformly and independently sampled vertices all land
in a set B of density β is βt+1. Is it true that Pr[(B, t)] is very close to this bound
for a sufficiently good expander? Theorem 3.6 falls a factor of β short of this bound
(as we have t+1 sample points). It also does not provide a comparable lower bound.
The following result, which we do not prove here, fills this gap.

Theorem 3.9 ([AFWZ95]). If β > 6α, then

β · (β + 2α)t ≥ Pr[(B, t)] ≥ β · (β − 2α)t.

It is also possible to derive “time dependent” versions of the upper bound through
simple adaptations of the proof of Theorem 3.6. This will be useful for us a little
later.

Theorem 3.10. For every subset K ⊂ {0, . . . , t} and vertex subset B of density β,

Pr[Xi ∈ B for all i ∈ K] ≤ (β + α)|K|−1.

Occasionally we have to deal with a situation where the excluded set varies
between time steps. This is addressed in the following theorem:

Theorem 3.11. Let B0, . . . , Bt be vertex sets of densities β0, . . . , βt in an (n, d, α)-
graph G. Let X0, . . . , Xt be a random walk on G. Then

Pr[Xi ∈ Bi for all i] ≤
t−1∏
i=0

(
√

βiβi+1 + α).

This follows by a small adaptation of the previous arguments. Let Pi be the
projection on Bi, and note that Pr[Xi ∈ Bi for all i] = ||

∏t
i=1(PiÂ)P0u||1, and

||Pi+1ÂPiv||2 ≤ (
√

βiβi+1 + α) · ||v||2.



464 SHLOMO HOORY, NATHAN LINIAL, AND AVI WIGDERSON

As before, this simple approach seems to give away a factor of
√

β0βt, which is im-
portant for certain applications. For further discussion, see Alon-Feige-Wigderson-
Zuckerman [AFWZ95] or Bilu-Hoory [BH04]. For a different analysis using pertur-
bation theory which gives a Chernoff-like bound for expander walks, see [Gil98].

3.3. Applications.

3.3.1. Efficient error reduction in probabilistic algorithms. We now return to the
computational problem raised in subsection 1.1.3 of reducing the error in proba-
bilistic algorithms while trying to save on random bits used for this task.

Let A be a probabilistic algorithm for the language (=set of binary strings)
L. We first deal with the simpler case that the algorithm makes errors only on
inputs outside L (so called one-sided error), in which case we say that L is in the
complexity class RP. We then deal with the case that A may err both on inputs in
and outside L (so called two-sided error), in which case L is in the corresponding
complexity class BPP.

Again, recall that if we do not attempt to save random bits, an obvious reduction
in error can be achieved by running the algorithm many (say t) times, each time with
independent random bits. In the one-sided error case we would take the conjunction
of the answers, and in the two-sided error case we would take the majority. In both
cases the error probability will drop exponentially in t. However, the number of
random bits used will increase by a factor of t. We now proceed to achieve the
same error probability in both cases, with much fewer random bits, using expander
walks.

One-sided error. Let A be an algorithm to decide membership in L that is ran-
domized with a one-sided error. To decide whether a given input x belongs to
L, the algorithm samples a string r ∈ {0, 1}k and computes in polynomial time
a boolean function A(x, r). If x ∈ L, then A(x, r) = 1 for all r. If x �∈ L the
probability (over choices of r) that A(x, r) = 1 is at most β. Again our goal is
to reduce the probability of error to below a given threshold without a substantial
increase in the number of random bits that are required. To this end, choose an
explicit (n, d, α)-graph G = (V, E), with V = {0, 1}k, and a value of α sufficiently
smaller than the bound β which is the error of the given algorithm. Note that the
choice of α will put a lower bound on d (but as we shall see later d can be taken to
be O(α−2)).

For a given input x let Bx = B ⊆ {0, 1}k be the set of all strings r for which
the algorithm A errs on input x. We now introduce another algorithm A′ for the
membership problem.

(1) Pick a vertex v0 ∈ V uniformly at random.
(2) Start from it a length t random walk, say (v0, v1, . . . , vt).
(3) Return

∧t
i=0 A(x, vi).

We note that for the new algorithm A′ to be efficient this walk has to be efficiently
computed, hence the importance of having G explicitly described.

By Theorem 3.6

Pr[A′ fails ] = Pr[∀i vi ∈ B] ≤ (β + α)t.

Compared with the algorithm from Section 1, the new algorithm achieves an ex-
ponential reduction in error probability, while the number of random bits used is
only m + t log d = m + O(t).
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Two-sided errors. When our basic algorithm can err on every input, not just
when x �∈ L, we say that it makes a two-sided error. We show that the probability
of success can be amplified as well in algorithms which make two-sided errors using
the same trick. We say that the language L belongs to the complexity class BPP
if there is a polynomial time randomized algorithm A to decide whether a given
input x belongs to L. It is assumed that for every x (either in or out of L) A errs
with probability ≤ β ≤ 1

10 . To reduce our probability of error we can run A on t
independently sampled random strings and take a majority vote. It is a simple
consequence of the Chernoff bound that the resulting error probability decreases
exponentially with t. To save on randomness we again use expander walks.

As before we assume that A uses k random bits and we employ an (n, d, α)-
graph on the vertex set V = {0, 1}k. Again let Bx = B ⊂ V be the collection of all
random strings for which the algorithm A errs on input x. Our modified algorithm
A′ works as follows:

(1) Pick a vertex v0 ∈ V uniformly at random.
(2) Start from it a length t random walk, say (v0, . . . , vt).
(3) Return majority{A(x, vi)}.

The algorithm A′ fails iff a majority of the vi’s belong to B. Fix a set of indices
K ⊂ {0, 1, . . . , t} of cardinality |K| ≥ (t + 1)/2. By Theorem 3.10

Pr[vi ∈ B for all i ∈ K] ≤ (β + α)|K|−1 ≤ (β + α)(t−1)/2.

We will assume that α+β ≤ 1/8 and apply the union bound on the possible choices
of K to deduce that

Pr[A′ fails ] ≤ 2t · (β + α)(t−1)/2 = O
(
2−t/2

)
.

So here too we achieve an exponential reduction of the error probability using only
m+O(t) random bits. In the following table we collect the main parameters of the
various techniques presented for error reduction.
Method Error Probability No. of random bits
Randomized algorithm A 1/10 m
t independent repetitions of A 2−t t · m
Sampling a point and its neigh-
bors in an (n, t, 1/

√
t)-graph.

1/t m

A random walk of length t on an
(n, d, 1/40)-graph

2−t/2 m + O(t)

Further progress and reading.
The exact form of the exponential decay in error using expander walks and its

dependence on the spectral gap was found by Gillman [Gil98] and is a natural
optimal generalization of the Chernoff bound for independent sampling.

It is easy to see that a good approximation to the probability of hitting any
set (event) in the space actually gives a good sampler for the average of any real
function, and indeed expander walks are used for that purpose (for a good survey
on randomness efficient samplers, see [Gol97]).

3.3.2. Hardness of approximating maximum clique size. We now turn to a different
application of random walks on expanders to computational complexity. We show
how they are used in enhancing hardness of approximation factors of the clique
problem. We first give the necessary background on hardness of approximation.
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Recall that a clique in a graph G is a subset of vertices S ⊆ V (G) in which
every two vertices are adjacent. The clique number ω(G) of a graph G is defined
as the largest cardinality of a clique in G. An important computational problem is
estimating this parameter. No efficient (or even subexponential time) algorithm is
known for this problem. The discussion below explains why it is unlikely that such
an algorithm exists.

Among the great achievements of theoretical computer science in the 1970’s
and 80’s was the discovery of numerous natural decision problems that are NP-
complete. The determination of the clique number is among these problems. We
are given a graph G and an integer k and are asked to determine whether ω(G) ≥ k.
The fact that this problem is NP-complete means that if there is a polynomial-
time algorithm to solve the clique problem, then P = NP. This means that every
problem in NP has a polynomial time algorithm. That conclusion is considered ex-
tremely unlikely, even though we seem far from proving it. One empirical reason for
the belief that P �= NP is that the class NP is extremely rich. Literally thousands
of important problems from many diverse branches of science and technology are
known to be NP-complete. These problems have been attacked (independently)
for decades by many scientists and engineers for their practical importance, and no
efficient algorithm for any was found.

Assuming these problems, most of which are about finding the optimal solution
to a given problem, are all hard, a natural relaxation is to seek an approximate
solution. How hard are these problems? For a long time only a few hardness results
for approximation were known. A breakthrough in the study of this fundamental
problem was made with the proof of the PCP Theorem in [AS98, ALM98]. The
connection between such theorems and hardness of approximation was established
in [FGL91]. We are unable to go into this fascinating subject at any length and
refer the reader to surveys by Sudan [Sud04] and by Arora-Lund [AL96].

As mentioned above, in a classical paper, Karp [Kar72] showed that it is NP-
hard to determine exactly the clique number of a given graph. An early triumph of
the PCP theory was the proof that it is NP-hard even to approximate the clique
number to within any constant factor.2

Theorem 3.12 (Feige-Goldwasser-Lovász-Safra-Szegedy [FGL91]). There are two
constants 1 > δ1 > δ2 > 0 such that it is NP-hard to decide for a given n-vertex
graph G whether ω(G) ≤ δ2n or ω(G) ≥ δ1n.

In this section we will show that even obtaining a very rough approximation
for ω(G) is NP-hard. That is, we will show that it is NP-hard to approximate
ω(G) even within a factor of nε for some fixed ε > 0. Specifically we show the
following theorem.

Theorem 3.13. There exists a constant ε > 0 with the following property. If
there exists a polynomial-time algorithm A whose output on every n-vertex graph
G satisfies n−ε ≤ A(G)/ω(G) ≤ nε, then NP = P.

This theorem was proven by [ALM98]. Our proof will follow [AFWZ95]. It as-
sumes an algorithm A as in the theorem and creates from it an efficient algorithm
B for the problem of approximating the clique number to within a constant factor.

2In fact, the simplest form of the PCP Theorem is almost equivalent to this statement.
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Such a conversion is called a reduction. If the resulting algorithm B is determin-
istic, then we can use Theorem 3.12 to conclude that the existence of algorithm A
implies P = NP.

We will first present a probabilistic reduction (due to Berman and Schnit-
ger [BS92]) between the two problems, namely an algorithm B which is probabilistic
polynomial time. Note that with this weaker reduction, the assumption of Theo-
rem 3.12 only implies a probabilistic polynomial time algorithm for all problems in
NP (or RP = NP in complexity theoretic lingo). After describing this probabilis-
tic reduction, we will show how to eliminate the randomness from the algorithm B,
resulting in a deterministic algorithm B′. For this we will again employ walks on
expander graphs. This will prove the conclusion P = NP and thus the fact that
approximating the clique number to within nε is NP-hard.

We should note that a much stronger hardness result is known about approxi-
mating the clique number, due to H̊astad [H̊as99] (whose proof requires much more
advanced techniques). He showed that efficiently approximating ω(G) to within
n1−δ, for any δ > 0, implies that NP = RP (via a probabilistic reduction). This
was very recently derandomized by Zuckerman [Zuc05], again via more difficult
techniques than mere expander walks, to yield that even such an approximation is
actually NP-hard. Note that since a factor-n approximation is trivial, this result
is surprisingly tight.

The probabilistic reduction.
The randomized reduction of [BS92] yields a version of Theorem 3.13 where the

same assumptions lead to a weaker conclusion:

Lemma 3.14 (Theorem 3.13, weak version). If there exists a polynomial-time
algorithm A whose output on every n-vertex graph G satisfies n−ε ≤ A(G)/ω(G) ≤
nε, then NP ⊆ RP. Here ε > 0 is some absolute constant.

The proof follows by converting algorithm A into a probabilistic polynomial-time
algorithm B that can solve the decision problem considered in Theorem 3.12. This
shows that NP ⊆ RP.3

In order to apply algorithm B to a given n-vertex graph G = (V, E), consider
a graph H, with vertex set V t, where t = log n. The vertices (v1, . . . , vt) and
(u1, . . . , ut) in H are adjacent if the subgraph of G induced by the set {v1, . . . , vt}∪
{u1, . . . , ut} is a clique. Whether ω(G) is below δ2n or above δ1n, this is significantly
amplified in H. The amplification is so strong that a random subset of m = poly(n)
vertices in H tends to behave very differently with respect to the clique number of
the induced graph.

Here is what algorithm B does on input G = (V, E):
(1) Pick m random vertices from V t and compute the subgraph H ′ of H induced

on this set of vertices.
(2) Apply algorithm A to H ′.
(3) Algorithm B returns 1 if A(H ′) > 1

2δt
1m, and otherwise it returns 0.

We need the following simple combinatorial observation.

Claim 3.14.1. Every clique in H is contained in a clique of the form St where S
is an inclusion-maximal clique in G. In particular, ω(H) = ω(G)t.

3This in fact shows only NP ⊆ BPP, but it is a standard fact (using the self-reducibility of
NP-complete problems) that the inclusion NP ⊆ BPP actually implies the stronger conclusion
NP ⊆ RP.
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Proof. Clearly if S is a clique in G, then the set St is a clique in H, and in particular
ω(H) ≥ ω(G)t. On the other hand, consider some clique S′ in H. Let S ⊆ V (G)
be the set of those vertices in G that appear as an entry in any of the t-tuples in
S′. Clearly S forms a clique in G, and |S′| ≤ |S|t, whence also ω(H) ≤ ω(G)t. �

We need to show two things:
(1) If ω(G) ≥ δ1n, then almost surely ω(H ′) ≥ 1

2δt
1m.

(2) If ω(G) ≤ δ2n, then almost surely ω(H ′) ≤ 2δt
2m.

With a proper choice of m = poly(n) and t = log n this proves the lemma.
For the first claim, consider a clique Q in H of size ω(H) = ω(G)t ≥ (δ1n)t. The

expected number of vertices from Q in H ′ is |Q| · |V (H′)|
|V (H)| ≥ δt

1m. By the Chernoff
bound,4 with high probability this intersection is at least 1

2δt
1m as stated.

For the other claim we need to show that it is very unlikely that the m vertices
we sample from H include a large clique. For this analysis it suffices to consider
subsets of inclusion-maximal cliques Q in H, of which, by Claim 3.14.1, there
are at most 2n. The cardinality of Q does not exceed (δ2n)t, and so we expect to
sample |Q|m

nt < δt
2m vertices from Q. We consider it a failure if we sample more

than 2 · δt
2m vertices from Q. Again by Chernoff’s bound, the failure probability

does not exceed exp(−Ω(mδt
2)). As mentioned, there are at most 2n inclusion-

maximal cliques in H, and so the total probability of failure is still o(1), provided
that mδt

2 � n. This can be guaranteed by a proper choice of m = poly(n).

The deterministic reduction. Again we assume there exists a polynomial-time
algorithm A distinguishing between the two cases of Theorem 3.13. This time we
use A to derive a deterministic polynomial-time algorithm B′ that can distinguish
between the two cases of Theorem 3.12, whence NP = P.

The only difference between algorithm B′ and algorithm B is that algorithm B′

uses a derandomized sampling to construct the graph H ′. This is done as
follows. Choose some (n, d, α)-expander G on the same vertex set as G. In order
to select the vertices in H ′, we no longer take a random sample of t-tuples from
V (G)t. Rather we consider all t-tuples representing a length (t − 1) walk in the
graph G. The resulting graph H ′ has m = ndt−1 vertices. Since d is fixed and
t = Θ(log n), it follows that m is polynomial in n. We are already familiar with
the idea that length (t − 1) random walks on G should behave like random t-tuple
in |V |t. We need to establish this principle in the present context as well.

Claim 3.15. If ω(G) ≤ δ2n, then ω(H ′) ≤ (δ2 + 2α)tm.

Proof. As before, a clique in H ′ corresponds to all length-(t − 1) walks in G that
are confined to some clique in G. Consequently, ω(H ′)/m is the largest probability
that such a walk is confined to some clique S in G (i.e., the maximum of such a
probability over all choices of a clique S). By assumption |S| ≤ ω(G) ≤ δ2n, and
our claim follows now by Theorem 3.9. �

The complementary statement that we need is:

Claim 3.16. If ω(G) ≥ δ1n, then ω(H ′) ≥ (δ1 − 2α)tm.

4This is an upper bound on the tail of a binomial distribution. Let Z be Binomial(N, p),
i.e. the sum of N independent 0-1 random variables that are one with probability p. Then
Pr[|Z − E[Z]| < ∆ · E[Z]] < 2 exp(−Np∆2/3), for all 0 < ∆ < 1.
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Proof. Let S be a clique in G of cardinality |S| ≥ δ1n. By Theorem 3.9 a random
walk of length (t − 1) in G remains confined to S with probability (δ1 − 2α)t. The
conclusion follows. �

The rest of the proof follows as above.

4. A geometric view of expander graphs

An attractive feature of expander graphs is that they can be viewed from many
different angles. As we saw already, these combinatorial objects have a variety
of applications in the design of algorithms and in computational complexity. The
relationship between expansion and the spectral gap adds an algebraic perspective
to the picture. Probabilistic considerations arise in the study of rapidly mixing
random walks on graphs. In this section we investigate some geometric aspects of
expander graphs.5

4.1. The classical isoperimetric problem. The fact that a given graph G is
a good expander is equivalent to the statement that G satisfies a certain discrete
isoperimetric inequality. Let us quickly recall the grandmother of all isoperimetric
inequalities which goes back to the ancient Greeks.

Problem 4.1. Of all simple closed curves in the plane of a given length, which
curve encloses the greatest area?

The ancient Greeks had no doubt about the correct answer, namely that the
optimal curve is the circle. Proving this statement was a different matter altogether.
The first rigorous proof was claimed by Jacob Steiner (1841), based on the so-
called Steiner Symmetrization. A flaw in Steiner’s argument was pointed out
by Weierstass, but several valid proofs were found shortly afterwards. Some of these
proofs do rely on Steiner’s original ideas. As we show below, analogous ideas are
very useful in the study of isoperimetric inequalities on graphs and in particular in
recent work [LL06] on the Margulis expander (viz. subsection 2.2).

Here is the idea of Steiner Symmetrization. First observe that there is no loss of
generality in considering only convex domains, for the convex hull of a nonconvex
closed planar domain K has a larger area and a smaller circumference than K
itself. So given that K is a compact convex set, let us symmetrize it as follows. We
describe the symmetrization of K around the x-axis. For the general operation,
one considers a rotated K. Let [x1, x2] be the projection of K to the x-axis, and
for x ∈ [x1, x2] let y1(x) and y2(x) be the smallest and largest values of y attained
by some point (x, y) ∈ K. The resulting set is

K ′ = {(x, y) : x ∈ [x1, x2] and |y| ≤ (y2(x) − y1(x))/2}.
This transformation preserves the area and does not increase the circumference.
Consequently the circumference of an optimal6 K must be invariant under this
operation. With a little extra work, one shows that an optimal K must, in fact,

5Just for the record, this is only a partial list of topics that are related to expander graphs.
For example, most of the known explicit constructions of expander graphs depend on deep ideas
from number theory and representation theory.

6... should the optimum exist. This subtle issue was pointed out by Weierstrass.
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be invariant under such a symmetrization step. From here it is only a short route
to proving that the optimal K is a disc. Let us point out that the subtle points
concerning the existence of an optimum do not bother us in the realm of finite
graphs. For a general survey of geometric isoperimetric problems, see the book by
Burago and Zalgaller [BZ88]. Siegel [Sie] provides a historical review.

K K’

Symmetrization Line

Figure 2. Steiner Symmetrization.

4.2. Graph isoperimetric problems. In the spirit of the classical isoperimetric
problem, one can consider analogous problems in graphs rather than in Euclidean
spaces. In this analogy the “area” of a set of vertices S is its cardinality |S|. There
are two main natural discrete analogs for the “circumference” of S. We can consider
the number of edges going out from S or the number of vertices outside S that have
a neighbor in it. This leads us to define the two basic isoperimetric parameters for
a given n-vertex graph G and an integer n > k ≥ 1.

Definition 4.2. The edge isoperimetric parameter:

ΦE(G, k) = min
S⊂V

{|E(S, S)| : |S| = k}.

Definition 4.3. The vertex isoperimetric parameter:7

ΦV (G, k) = min
S⊂V

{|Γ(S) \ S| : |S| = k}.

It is desirable to completely understand these parameters for natural families
of graphs (see below). It is also of great interest to determine or estimate these
parameters for given G and k. In this generality, these computational problems are
difficult (co-NP-hard) [BKV81]. Much (and still ongoing) research was dedicated
to the search for efficient algorithms to approximate these quantities. Deep and
surprising connections were found between these problems and the subject of Metric
Embeddings; see Section 13.

We illustrate these concepts with an important family of graphs for which the
two basic isoperimetric problems are completely solved. The d-dimensional discrete
cube Qd is a graph on vertex set V (Qd) = {0, 1}d. Two vertices v1, v2 ∈ {0, 1}d

are adjacent if these two vectors differ in exactly one coordinate. The graph of the
d-dimensional cube plays a major role in many parts of discrete mathematics, and

7This parameter counts the number of vertices in S̄ with a neighbor in S. Other interesting
variants may be defined, e.g. (i) the number of vertices in S with a neighbor in S̄, or (ii) the more
symmetric |{x ∈ S|x has some neighbors in S̄}| + |{y ∈ S̄|y has some neighbors in S}|. However,
the present definition seems to be the most useful for applications.
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both the vertex and the edge-isoperimetric inequalities on the d-cube are useful in
a variety of applications.

4.2.1. Example: The discrete cube. As stated above, both the vertex and edge-
isoperimetric parameters for the d-cube are known for every d and 2d > k > 0. To
reduce the technicalities we state these results only for certain values of k and in
an asymptotically tight form. A thorough survey of these and related problems can
be found in [Bol86].

• ΦE(Qd, k) ≥ k(d − log2 k). This bound holds with equality when k is a
power of two, k = 2l. In this case equality holds for S that is the set of
vertices of an l-dimensional subcube.

• If k =
(
d
0

)
+
(
d
1

)
+ ...+

(
d
r

)
(for some integer r), then the vertex isoperimetric

parameter ΦV (Qd, k) =
(

d
r+1

)
. Equality is achieved for the set S that is a

ball of radius r around some vertex v0, namely {v ∈ {0, 1}d : dH(v, v0) ≤ r}.
(Recall that dH(u, v), the Hamming distance between u, v ∈ {0, 1}d, is the
number of coordinates on which u, v differ.)

4.3. The Margulis construction. Margulis [Mar73] gave the first explicit con-
struction of an infinite family of expander graphs. Section 8 is devoted to this
construction and its analysis. Here we study it from a geometric point of view by
considering an infinite analog. The vertex set of this infinite graph is the unit square
(or torus) I × I, where I is the half-open interval [0, 1). The edges are defined by
two linear transformations:

T (x, y) → (x + y, y) mod 1, S(x, y) → (x, x + y) mod 1.

The neighbors of a point (x, y) are the points T (x, y), S(x, y), T−1(x, y), S−1(x, y).
Thus the graph is 4-regular. The expansion property of this graph is described by
the following theorem:

Theorem 4.4 (Margulis [Mar73], Gabber-Galil [GG81]). There exists an explicit
ε > 0 such that for any measurable set A ⊂ I × I of Lebesgue measure µ(A) ≤ 1

2 ,

µ(Γ(A) ∪ A) ≥ (1 + ε)µ(A),

where Γ(A) = S(A) ∪ T (A) ∪ S−1(A) ∪ T−1(A) is the neighbor set of A.

It is natural to conjecture which sets are extremal for the isoperimetric problem
in this graph.

Conjecture 4.5 (Linial). For every A ⊂ [0, 1]2 of Lebesgue measure µ(A) ≤ 1/2,

µ(A ∪ S(A) ∪ T (A) ∪ S−1(A) ∪ T−1(A)) ≥ 2µ(A).

Also,

µ(A ∪ S(A) ∪ T (A)) ≥ 4
3
µ(A).

If true, these bounds are clearly tight. If A = {(x, y) : |x| + |y| < t}, then
A∪Γ(A) = {(x, y) : |x|, |y| < t}, and µ(A∪Γ(A)) = 2µ(A). The second inequality
is attained for the hexagon A = {(x, y) : |x|, |y|, |x + y| < t}.

The analogous (and weaker) version of these conjectures concerning the transfor-
mations T̃ (x, y) → (x + y, y), and S̃(x, y) → (x, x + y) (no mod 1 here; namely the
ground set is no longer the unit torus but rather the Euclidean plane R

2) was re-
cently proved by Linial and London [LL06]. Their proof is very brief and completely
elementary. It is based on the idea of symmetrization described above.
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4.3.1. The discrete Laplacian. In classical vector analysis, the Laplace operator is
defined as ∆(f) = div(grad(f)). It turns out that it has an analogue, the discrete
Laplacian, which is natural and useful for several reasons. To present this analogy,
let us begin by introducing the discrete analogs for the gradient, and divergence
operators in graphs. The correct definition for the Laplacian will then be apparent.
Given an undirected graph G = (V, E), we fix an arbitrary orientation of the edges.
(The specific choice of the orientation does not affect anything in our discussion.)
Let K be the V × E incidence matrix of G where the entry

Ku,e =

⎧⎪⎨⎪⎩
+1 if the edge e exits the vertex u

−1 if the edge e enters the vertex u

0 otherwise.

We now define:
The gradient: Let f : V → R be a function on the vertices of G which we

view as a row vector indexed by V . The gradient operator maps f to fK,
a vector indexed by E. The gradient measures the change of f along the
edges of the graph. If e is the edge from u to v, then (fK)e = fu − fv.

The divergence: Let g : E → R be a function on the edges of G. The
divergence operator maps g, considered as a column vector indexed by E,
to Kg, a vector indexed by V . If we think of g as describing a flow, then
its divergence at a vertex is the net outbound flow, namely,

(Kg)v =
∑

e exits v

ge −
∑

e enters v

ge.

The Laplacian: In order to maintain the analogy with the real Laplacian,
the discrete Laplacian should map f to KKT f , where f : V → R. The
matrix L = LG = KKT is accordingly called the (discrete) Laplacian of
G.8 A simple calculation shows that L is the following symmetric matrix
with rows and columns indexed by V :

Lu,v =

{
−1 (u, v) ∈ E

deg(u) u = v.

One can easily deduce the following equality:

fLfT = fKKT fT = ||fK||2 =
∑

(u,v)∈E

(f(u) − f(v))2,(1)

where || · || denotes the l2 norm.
In particular:

Proposition 4.6. For every graph G, the matrix LG is positive semidefinite. Its
smallest eigenvalue is zero, and the corresponding eigenfunction is the constant
function.

Though it is possible to develop some of the theory for general (irregular) graphs,
the regular case is simpler to state and analyze.

Lemma 4.7. The Laplacian of a d-regular graph G satisfies:
• L = LG = dI − AG, where AG is G’s adjacency matrix.

8In the graph theory literature it is also called the Tutte Matrix of G and appears in contexts
such as the Matrix-Tree Theorem and randomized algorithms for matchings in graphs.
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• The spectrum of L is in [0, +2d] (since the spectrum of AG is in [−d, +d]).
• The smallest eigenvalue of L is zero.
• The spectral gap of G, namely λ1(AG)−λ2(AG), equals the smallest positive

eigenvalue of L.

4.4. The Cheeger constant and inequality. Many of the things we do here
for graphs had been studied previously in the geometric framework of Riemannian
manifolds. In particular, the Cheeger constant that we introduce now captures
a notion of “expansion” in this geometric context. The geometry underlying this
theory is that of an n-dimensional Riemannian manifold. We skip any formal
definitions here, but note that Riemannian geometry is a deep and technical setting;
we refer the reader to Buser’s book [Bus82]. It suffices at this high level to say that
this is a space that looks locally like Rn and carries a differentiable structure with
a smoothly varying notion of inner product among tangent vectors. This allows us
to carry out the familiar operations from calculus, compute volumes and distances.
We now define the continuous analog of edge expansion for manifolds: the Cheeger
constant.

Definition 4.8. The Cheeger constant of a compact n-dimensional Riemannian
manifold M is9

h(M) = inf
A

µn−1(∂A)/ min(µn(A), µn(M \ A)),

where A runs over all open subsets of M and ∂A is the boundary of A. The n and
n − 1 dimensional measures are denoted µn and µn−1.

The analogy with the definition of edge expansion should be obvious: We par-
tition M into A and its complement M \ A, and consider the ratio between two
quantities: (i) the ((n − 1)-dimensional) measure of the boundary of A and (ii)
the minimum between the measure of A and its complement. These measures are
n-dimensional.

An intuitive demonstration of the definition is illustrated in Figure 3. Here is a
“dictionary” to move between the theory for graphs and the geometric counterpart.

M
∂A

A, M \ A
µn−1(∂A)

min(µn(A), µn(M \ A))

⇐⇒

G
E(S, S)

S, S
|E(S, S)|

min{|S|, |S|}

As hinted above, it is possible to develop everything in differential calculus in
the broader context of Riemannian manifolds. In particular, associated with any
Riemannian manifold M is the Laplacian, a linear differential operator defined on
real functions f : M → R. It is defined in the familiar way via ∆(f) = div(grad(f)).
If ∆f = λf , we say that f is an eigenfunction of the Laplacian with eigenvalue λ.

9The original definition of Cheeger’s constant was in a slightly different context and did not
involve M \ A.
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M

A

A M\A

Figure 3. The sets A, M \A and ∂A for some Riemannian man-
ifold M .

It can be shown that all eigenvalues of ∆ are nonnegative and that its lowest
eigenvalue is zero, corresponding to the constant eigenfunction.10 A fundamental
theme in this area is the connection between expansion (Cheeger constant h) and
the spectrum of the Laplacian.

Theorem 4.9 (Cheeger [Che70]). Let M be a compact Riemannian manifold, and
let λ be the smallest positive eigenvalue of its Laplacian. Then λ ≥ h2/4.

Below we will derive the discrete analog of this theorem.

4.5. Expansion and the spectral gap. We wish to prove a discrete analogue of
Theorem 4.9, namely the qualitative equivalence between expansion and spectral
gaps in graphs. This theorem was already stated without proof in Section 2. We
restate the theorem and prove it here. Recall first the definition of (edge) expansion.

Definition 4.10. The edge expansion ratio of a graph G = (V, E) is

h(G) = min
S⊆V, |S|≤|V |/2

|E(S, S)|
|S| .

Theorem 4.11. Let G = (V, E) be a finite, connected, d-regular graph and let λ
be its second eigenvalue. Then

d − λ

2
≤ h(G) ≤

√
2d(d − λ).

This theorem was proved by Dodziuk [Dod84], and independently by Alon-
Milman [AM85], and Alon [Alo86].

This theorem was also generalized in several ways, all beyond the scope of this
manuscript. We just mention the most useful generalization, to general reversible
Markov chains. For these, one can define a weighted analog of edge expansion
called conductance and give similar bounds on it in terms of the spectral gap of
the chain. This was done by Jerrum and Sinclair [JS89] and had a huge impact
on the analysis of convergence of “Monte Carlo” algorithms, used extensively in
statistical physics and optimization (see [JS96] for a survey).

The following two examples show that, up to a constant factor, both the upper
and the lower bound in Theorem 4.11 can be tight.

10The standard definition of eigenvalues and eigenfunctions of the Laplacian is usually made
through the variational principle. For compact manifolds, the infimum value of each Rayleigh
quotient is attained by a corresponding eigenfunction.
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(1) The lower bound is tight: Our discussion of G = Qd, the d-dimensional
cube, in subsection 4.2.1 yields that h(G) = 1 (the bound is attained for
the d − 1 dimensional subcube). On the other hand, the spectral gap is
d − λ = 2.

(2) The upper bound is tight: The n-vertex cycle: This is the 2-regular
graph Cn on the vertices {0, . . . , n− 1}, where vertex i is adjacent to i + 1
and i − 1 mod n. Here h(Cn) = Θ(1/n) is attained on a half cycle, while
d − λ = Θ(1/n2).

For the above estimates of the spectral gap see subsection 11.1 or the Lovász
problem book [Lov93].

The proof of Theorem 4.11 is given in the next two subsections.

4.5.1. Large spectral gap implies high expansion. The proof is similar to that of the
Expander Mixing Lemma 2.5, but using the fact that the two sets are complemen-
tary. The first eigenvector of a regular graph is the all-ones vector 1 = (1, . . . , 1), so
we can prove that λ ≥ d−2h(G) by exhibiting a vector f ⊥ 1 with a large Rayleigh
quotient fAfT /||f ||2 ≥ d − 2h(G). The vector we consider is f = |S|1S − |S|1S ,
where 1X denotes the characteristic vector of the set X. Here S is a set satisfying
h(G) = |E(S, S)|/|S|, and |S| ≤ n/2. Let us evaluate the Rayleigh quotient:

||f ||2 = |S|2|S| + |S|2|S| = |S||S|(|S| + |S|) = n|S||S|,
fAf t = 2

(
|E(S)||S|2 + |E(S)||S|2 − |S||S||E(S, S)|

)
.

Since G is d-regular, we can substitute

2|E(S)| = d|S| − |E(S, S)|
2|E(S)| = d|S| − |E(S, S)|.

Putting it all together one concludes that

λ ≥ fAf t

||f ||2 =
nd|S||S| − n2|E(S, S)|

n|S||S|
= d − n|E(S, S)|

|S||S|
≥ d − 2h(G).

The last inequality follows from the fact that h(G) = |E(S, S)|/|S|, and |S| ≥ n/2.

4.5.2. High expansion implies large spectral gap. This is the more difficult (and
interesting) direction. Let g be the eigenvector associated with λ2. Based on the
knowledge of g, we seek a cut with relatively few edges. Had it been the case that
the function g takes only two values, the obvious thing is to partition the vertices
according to the two values of g. In this idealized case, we need not give away a
square in the inequality. For a general g, we partition according to the sign of g
(since g ⊥ 1 it has both positive and negative entries). We then need to bound the
edge expansion of the corresponding cut.

Define f = g+ and V + = supp(f), i.e. fv = max(gv, 0) and V + = {v : fv > 0}.
Without loss of generality, V + contains at most n/2 vertices (or else we consider −g,
which is also an eigenvector with the same eigenvalue λ). The result is obtained by
considering the Rayleigh quotient fLfT /||f ||2 and proving that (i) fLfT /||f ||2 ≤
d − λ and (ii) h2/2d ≤ fLfT /||f ||2.
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We start by proving (i). First observe that for x ∈ V + we can write

(Lf)x = dfx −
∑
y∈V

axyfy = dgx −
∑

y∈V +

axygy

≤ dgx −
∑
y∈V

axygy = (Lg)x = (d − λ) · gx.

As fx = 0 for x /∈ V + we obtain that

fLfT =
∑
x∈V

fx · (Lf)x ≤ (d − λ)
∑

x∈V +

g2
x = (d − λ)

∑
x∈V

f2
x = (d − λ)||f ||2.

It remains to prove (ii). To this end, we introduce yet another quantity:

Bf =
∑

(x,y)∈E

|f2
x − f2

y |,

and prove that

h · ||f ||2 ≤ Bf ≤
√

2d · ||fK|| · ||f ||,(2)

which clearly yields (ii), as ||fK||2 = fLfT .
For ease of notation, we label the n vertices of G by 1, . . . , n, so that f1 ≥

f2 ≥ · · · ≥ fn, and denote [i] = {1, . . . , i}. The upper and lower bounds on Bf

are proved in the following two lemmas. The upper bound is obtained using the
Cauchy-Schwartz inequality, while the lower bound is obtained by considering the
expansion of level sets, [i] for i ∈ V +.

Lemma 4.12. The following inequality holds: Bf ≤
√

2d · ||fK|| · ||f ||.

Proof. Using the Cauchy-Schwartz inequality, we have

Bf =
∑
E

|f2(x) − f2(y)| =
∑
E

|f(x) + f(y)| · |f(x) − f(y)|

≤
√∑

E

(f(x) + f(y))2 ·
√∑

E

(f(x) − f(y))2.

The required result is obtained by evaluating the two factors:√∑
E

(f(x) − f(y))2 = ||fK||

√∑
E

(f(x) + f(y))2 ≤
√

2
∑
E

(f2(x) + f2(y)) =
√

2d
∑
V

f2(x) =
√

2d · ||f ||.

�

Lemma 4.13. The following inequality holds: Bf ≥ h · ||f ||2.

Proof. This inequality intuitively says that the given eigenvector somehow approx-
imates the optimal cut. We now make it precise. Rewrite Bf in terms of the values
of f and the sizes of cuts E([i], [i]) for i ∈ V +. Then use expansion and the as-
sumption that |V +| ≤ n/2 to give a lower bound on the number of edges in these
cuts:
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Bf =
∑

(x,y)∈E, x<y

(f2
x − f2

y ) =
∑

(x,y)∈E, x<y

y−1∑
i=x

(f2
i − f2

i+1)

=
n−1∑
i=1

(f2
i − f2

i+1) · |E([i], [i])| =
∑

i∈V +

(f2
i − f2

i+1) · |E([i], [i])|

≥ h
∑

i∈V +

(f2
i − f2

i+1) · i = h
∑

i∈V +

f2
i = h · ||f ||2.

The last equality is obtained by collapsing the telescopic sum and observing the
fi+1 = 0 for i = |V +|. �

4.6. Expansion of small sets. As mentioned before, there is great interest in the
edge and vertex expansion of sets of varying sizes as captured by the parameters
ΦE(G, k) and ΦV (G, k) and other parameters mentioned below. Typically, smaller
sets exhibit better expansion, and this fact is crucial for certain applications (for
more on this see Section 10). In this section we explore the expansion of small
sets from two different perspectives: (i) connection with the spectral gap and (ii)
typical behavior - expansion of small sets in random regular graphs.

4.6.1. Connection with the spectral gap. Theorem 4.11 reveals the connection be-
tween the spectrum of a graph (specifically λ(G)) and its expansion, h(G). Here
we present several variations on the theme of Theorem 4.11 that pertain to smaller
sets.

Let us consider the following expansion parameters of a graph G = (V, E) (com-
pare with subsection 4.2):

ΨE(G, k) = min
S⊂V
|S|≤k

|E(S, S)|
|S| ; ΨV (G, k) = min

S⊂V
|S|≤k

|Γ(S) \ S|
|S| ; Ψ′

V (G, k) = min
S⊂V
|S|≤k

|Γ(S)|
|S| .

The best known lower bound on vertex expansion for small sets is due to Kahale.

Theorem 4.14 (Kahale [Kah95]). There is an absolute constant c such that an
(n, d, α)-graph G satisfies the following inequality for all ρ > 0:

Ψ′
V (G, ρn) ≥ (d/2) · (1 −

√
1 − 4(d − 1)/(d2α2)) · (1 − c log d/ log(1/ρ)).

How good a bound does this yield? As we’ll see below (Theorem 5.3) the second
eigenvalue of every (n, d)-graph is λ(G) = dα ≥ 2

√
d − 1− o(1). With this value of

α and with ρ approaching zero, Kahale’s bound yields vertex expansion of d/2 for
small linear sized sets. The same paper [Kah95] contains a construction showing
that the above bound is close to tight. The construction takes a Ramanujan graph
G, i.e. a graph with λ(G) ≤ 2

√
d − 1, and by performing a small change, reduces

the expansion without significantly increasing λ(G). The resulting graph G′ has
two vertices with the same d-neighbors, i.e. expansion at most d/2, but λ(G′) ≤
2
√

d − 1+ o(1). It is not known if anything more substantial than that can happen
in graphs with λ ≤ 2

√
d − 1 + o(1).

If we are willing to settle for vertex expansion of d/4 for small linear sized sets,
then we can offer the following simple proof.

Theorem 4.15 (Tanner [Tan84]). An (n, d, α)-graph G satisfies Ψ′
V (G, ρn) ≥

1/(ρ(1 − α2) + α2) for all ρ > 0.
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Proof. Let S be some vertex set of cardinality ρn. The claim follows by comparing
a lower and an upper bound on ‖Â1S‖2

2, where 1S is the characteristic function of
S and Â is the normalized adjacency matrix of G with eigenvalues λ̂1 = 1, . . . , λ̂n.

Let the expansion of 1S in the basis of the eigenvectors of Â be 1S =
∑

i aivi.
Here v1 = (1 · · · 1)/

√
n, and a1 = |S|/

√
n. Then:

‖Â1S‖2
2 =

n∑
i=1

λ̂2
i a

2
i ≤ |S|2

n
+

n∑
i=2

α2a2
i ≤ |S|2

n
+ α2(‖1S‖2

2 − a2
1)

= ρn · (ρ + α2(1 − ρ)).

‖Â1S‖2
2 =

∑
x∈Γ(S)

(|S ∩ Γ(x)|/d)2 ≥ |S|2/|Γ(S)|

= ρn · |S|/|Γ(S)|,

where the last inequality follows from Cauchy-Schwartz since
∑

x∈Γ(S) |S∩Γ(x)|/d =
|S|. The required result is obtained by putting together the two bounds. �

4.6.2. Typical behavior.

Theorem 4.16. Let d ≥ 3 be a fixed integer. Then for every δ > 0 there exists
ε > 0 such that:

(1) For almost every (n, d)-graph G

ΨE(G, εn) ≥ d − 2 − δ; ΨV (G, εn) ≥ d − 2 − δ; Ψ′
V (G, εn) ≥ d − 1 − δ.

(2) For almost every d-regular bipartite graph G with n vertices on each side

ΨV (G, εn) ≥ d − 1 − δ.

As observed below (subsection 5.1.1) these expansion parameters are best pos-
sible. By considering any connected subset S of s vertices we conclude that
ΨE(G, s) ≤ d − 2 + 2

s , ΨV (G, s) ≤ d − 2 + 2
s , and Ψ′

V (G, s) ≤ d − 1 + 2
s . A

similar argument shows that for bipartite graphs ΨV (s) ≤ d − 1 + 1
s .

The proof of the theorem is reminiscent of our proof for Lemma 1.9, though some
extra care is needed here.

There is a nontrivial issue concerning the question of how to uniformly sample
an (n, d)-graph, and this is done using the so-called “configuration model”. In the
proof below we say very little about this issue and refer the reader to subsection 7.2.1
for an additional brief discussion.

Proof. We start with the bipartite case, where G is a bipartite d-regular graph
consisting of left and right vertex sets L, R, where |L| = |R| = n. To generate such
a graph at random we let d half-edges emanate from each vertex and randomly
match the dn left half-edges with the dn right half-edges to form the dn edges of
the graph. Note that such a graph may have multiple edges.

Let η = d − 1 − δ denote the expansion we wish to prove. For sets S ⊂ L and
T ⊂ R, let XS,T be an indicator random variable for the event Γ(S) ⊂ T . It clearly
suffices to prove that

∑
XS,T = 0 holds almost surely, where the sum is over all

choices of S and T with s = |S| ≤ εn and t = |T | = �ηs�. Note that smaller values
of t can be safely ignored. Since for any sets S, T the probability of XS,T = 1 is
(td)sd·(nd−sd)!

(nd)! , where (n)k = n(n− 1) · · · (n− k + 1), we obtain the following upper
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bound:

Pr[
∑

XS,T > 0] ≤
εn∑

s=1

(
n

s

)(
n

t

)
· (td)sd · (nd − sd)!

(nd)!
,

where t = �ηs�. Using the inequality
(
n
k

)
≤ (en/k)k yields:

Pr[
∑

XS,T > 0] ≤
εn∑

s=1

(en

s

)s

·
(en

t

)t td

nd

td − 1
nd − 1

· · · td − sd + 1
nd − sd + 1

≤
εn∑

s=1

[
en

s
·
(

en

ηs

)η

·
(ηs

n

)d
]s

=
εn∑

s=1

[
c(δ, d) · (s/n)δ

]s
,

where c(δ, d) is a function that depends only on δ and d. Given δ > 0, we pick a
sufficiently small ε > 0 to make the expression in the square brackets smaller than
1/10 (this computation yields ε(δ, d) = c−d/δ for some absolute constant c > 1).
It is easy to check by considering small and large values for s separately that the
entire sum is o(1).

We next turn to the case of general graphs. Our first step is to prove that for
every d ≥ 3 and δ > 0 there is some ε > 0 such that for almost every (n, d)-graph
every vertex set S of cardinality at most εn does not have too many internal edges:

(3) (1 + δ/2) · |S| > |E(S)|.

Clearly, this inequality implies the two lower bounds ΨE(G, εn) ≥ d − 2 − δ and
ΨV (G, εn) ≥ d−2− δ. The third lower bound Ψ′

V (G, εn) ≥ d−1− δ requires some
more work, which we defer to the end. It is instructive to consider inequality (3) in
both the case where S is an independent set and the case where S is connected. In
the first case |E(S)| = 0, while in the second case |E(S)| ≥ |S|−1 so the inequality
is almost tight.

In the configuration model the graph G is generated by letting d half-edges
emanate from each of the n vertices and picking a random perfect matching of the
half-edges to form the dn/2 edges of the graph. To prove inequality (3) we define
an indicator random variable YS,K , where S is a nonempty vertex set of cardinality
s ≤ εn and K is a set of half-edges from S of cardinality k. The variable YS,K

equals one if all half-edges in K are matched among themselves. Consequently,
Pr[YS,K = 1] is the probability that a random matching of the dn half-edges of
G matches the half-edges of K with themselves. Recalling the standard notation
l!! = (l − 1)(l − 3) · · · 1 for the number of perfect matchings of a set of size l, we
obtain that Pr[YS,K = 1] = k!! (nd−k)!!

(nd)!! . Therefore, the probability of failure is
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bounded by

Pr[
∑

YS,K > 0] ≤
εn∑

s=1

sd∑
k=2(1+δ/2)s

(
n

s

)(
ds

k

)
k!! (nd − k)!!

(nd)!!

≤
εn∑

s=1

sd∑
k=2(1+δ/2)s

(ne

s

)s
(

dse

k

)k
k − 1
nd − 1

k − 3
nd − 3

· · · 1
nd − k + 1

≤
εn∑

s=1

sd∑
k=2(1+δ/2)s

c(d, δ)s
( s

n

)−s+k/2

≤
εn∑

s=1

sd
[
c(d, δ)(s/n)δ/2

]s
,

which is o(1) for a sufficiently small ε > 0. Therefore, inequality (3) holds almost
surely as claimed, and the required lower bounds on ΨE and ΨV follow.

We prove the lower bound on Ψ′
V by showing that in almost every (n, d)-graph,

every vertex set S of cardinality at most εn satisfies

(4) |Γ(S) \ S| + |E(S)| > (d − 1 − δ/2) · |S|.
The required lower bound on |Γ(S)| can be obtained from inequalities (3) and

(4) as follows. First apply inequality (3) to the set S ∩ Γ(S) to obtain

|S ∩ Γ(S)| + (δ/2) · |S| ≥ (1 + δ/2) · |S ∩ Γ(S)| > |E(S ∩ Γ(S))| = |E(S)|.
Summing this inequality with (4) implies that |Γ(S)| > (d− 1− δ)|S|, yielding the
desired lower bound on Ψ′

V . Therefore it remains to prove inequality (4).
We define the indicator variable ZS,R,K for two disjoint vertex sets S, R of car-

dinalities s, r and a subset K of cardinality k of the ds half-edges from S. Given
some graph G picked by the configuration model, ZS,R,K is one if the half-edges K
are matched among themselves and the other ds − k half-edges emanating from S
are matched with half-edges from R. Then it suffices to prove that

∑
ZS,R,K = 0

holds almost surely, where the sum is on triplets S, R, K with 0 < s ≤ εn and
r + k

2 = (d − 1 − δ/2)s. We have

Pr[ZS,R,K = 1] =
k!! (rd)sd−k (nd − 2sd + k)!!

(nd)!!
,

where the three factors in the numerator are the number of ways to match the
half-edges in K with themselves, the number of ways to match the other ds − k
half-edges from S with half-edges from R, and the number of ways to match the
remaining nd − 2sd + k half-edges with themselves. Therefore,

Pr[
∑

ZS,R,K > 0]

≤
εn∑

s=1

∑
r,k

r+k/2=(d−1−δ/2)s

(
n

s

)(
n − s

r

)(
ds

k

)
k!! (rd)sd−k (nd − 2sd + k)!!

(nd)!!

=
εn∑

s=1

∑
r,k

r+k/2=(d−1−δ/2)s

(
n

s

)(
n − s

r

)(
ds

k

)
k!! · [(rd)(rd − 1) · · · (rd − sd + k + 1)]
(nd − 1)(nd − 3) · · · (nd − 2sd + k + 1)

.
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Since each of the sd − k/2 factors in the numerator does not exceed d2s, and the
sd − k/2 factors in the denominator are at least nd − 2sd each, one obtains

Pr[
∑

ZS,R,K > 0]≤
εn∑

s=1

∑
r,k

r+k/2=(d−1−δ/2)s

(
ne
s

)s (ne
r

)r ( dse
k

)k ( ds
n−2s

)sd−k/2

=
εn∑

s=1

∑
r,k

r+k/2=(d−1−δ/2)s

(
ne
s

)s (ne
s

)r ( s
r

)r
(de)k

(
s
k

)k ( ds
n−2s

)sd−k/2

.

Therefore, since (s/k)k/s and (s/r)r/s are bounded by a constant,

Pr[
∑

ZS,R,K > 0] ≤
εn∑

s=1

∑
r,k

r+k/2=(d−1−δ/2)s

c(d, δ)s ·
( s

n

)−s−r+sd−k/2

≤
εn∑

s=1

sd ·
[
c(d, δ) · (s/n)δ/2

]s
.

As before, given d ≥ 3 and δ > 0, we choose a sufficiently small ε > 0 such that
the above probability is o(1). This completes the proof of inequality (4) and of the
lower bound on Ψ′

V . �

4.7. Expansion in hypergraphs? A hypergraph H = (V, E) consists of a collec-
tion E of subsets of a set V . The sets in E are called edges or hyperedges. When each
hyperedge has cardinality r we say that H is r-uniform. From this perspective, a
graph is a 2-uniform hypergraph. In the same way that graphs can be viewed as one-
dimensional complexes, such hypergraphs represent (r − 1)-dimensional complexes
and are, therefore, interesting from the geometric perspective of combinatorics. For
this reason it is very interesting to try and develop a parallel theory of expansion to
the one described here that applies to hypergraphs. This idea turns out to be rather
difficult to carry out when one is trying to extend the notion of spectral gap. We
refer the reader to some papers where (different) initial steps in this direction are
taken, e.g. [FW95] and [LSV05]. When one considers combinatorial expansion one
can use the definition of [BH04] or the concrete setting of extractors [Sha04]. The
latter provides a successful theory (in which r cannot be a constant). It should be
noted that at present we do not even have a satisfactory way of generating uniform
hypergraphs at random; see [Cam].

5. Extremal problems on spectrum and expansion

Much research in modern Discrete Mathematics revolves around the study of
extremal problems, and this is the topic of the present section. Here are several
natural extremal problems about expansion and spectra:

• What is the largest expansion ratio (or vertex expansion, etc.) of an (n, d)
graph?

• More generally, recall the edge and vertex isoperimetric parameters of a
graph (subsections 4.2, 4.6):

ΦE(G, k) = min
S⊂V

{|E(S, S)| : |S| = k} and ΦV (G, k) = min
S⊂V

{|Γ(S) \ S| : |S| = k}.
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Figure 4. The 3-regular infinite tree.

We ask, given d, k and n, how large these parameters can be in an (n, d)-
graph.

• How large can the spectral gap be in an (n, d) graph?
In the study of an extremal problem it is often beneficial to try to identify the

problem’s extremal instances. This is difficult for the present questions, but if we
are willing to consider infinite graphs as well, then the extremal case is clearly the
d-regular infinite tree Td, the ultimate expander. The question is how close one
can get to this level of expansion with finite d-regular graphs.

In this light we start our discussion with an analysis of the d-regular tree. We
observe that its edge expansion is d − 2 and show that its spectrum is the interval
[−2

√
d − 1, 2

√
d − 1]. This sheds both some light and some shade (it is a tree after

all...) on the analogous questions in finite graphs: (i) If G is an (n, d) graph, then
even if k � n, the relative expansion of sets of k vertices cannot exceed d−2+ok(1),
namely, ΦE(G, k) ≤ k(d − 2 + 2

k ). (ii) As mentioned already, the Alon-Boppana
theorem says that the second largest eigenvalue is at least 2

√
d − 1 − o(1).

5.1. The d-regular tree.

5.1.1. The expansion of Td. Consider the edge expansion function ΦE(Td, k) of
Td (sections 4.2, 4.6). The minimizing set S must clearly be connected, i.e. a
subtree. Therefore |E(S)| = |S| − 1, and (recalling that we are counting directed
edges) ΦE(Td, k) = kd−2(k−1) = k(d−2)+2. Consequently, the expansion ratio
of Td is

h(Td) = inf
finite S⊆V

|E(S, S)|/|S| = d − 2.

The above argument implies that ΦE(G, k) ≤ k(d− 2) + 2 for every (n, d)-graph
G and every k. However, h(G) is necessarily smaller than h(Td) = d − 2. To
see this, consider a random subset S ⊆ V (G) of size n/2. The expected value
of |E(S, S)|/|S| is d/2 + o(1), since every edge from G belongs to the random
cut E(S, S) with probability 1/2 + o(1). Therefore, there exists some set S of
cardinality n/2 with |E(S, S)|/|S| ≤ d/2 + o(1), whence h(G) ≤ d/2 + o(1). A
more refined analysis (see Alon [Alo97]) yields that h(G) ≤ d/2 − c

√
d for every
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d ≥ 3 and sufficiently large n. Here c > 0 is an absolute constant. This result is
tight, up to the value of c. As we shall see later in Theorems 5.12 and 7.10, there
are (n, d, α) graphs with α = O(d−1/2). The lower bound in Theorem 4.11 yields
h(G) ≥ d/2 − c

√
d in this case.

Open problem 5.1. What is the smallest f = f(d, k, n) such that every (n, d)-
graph has a set S of k vertices and |E(S, S)| ≤ f?

In full generality this question is exceedingly difficult and includes e.g. the girth
problem. This question asks, for given integers d, g ≥ 3, for the smallest n such that
there is an (n, d) graph with no cycles of length shorter than g; see e.g. [Hoo02].
Many other instances of this question are interesting and may not be as difficult as
the full problem.

5.1.2. The spectrum of Td. Let AT be the (infinite) adjacency matrix of Td. We
consider it as a linear operator on l2(V (Td)), the space of real square summable
functions on the vertices of the tree, and seek its spectrum. We recall some of the
basic definitions from operator theory and refer the reader to Rudin’s book [Rud91]
for a comprehensive discussion of spectra of general linear operators. As usual, we
define the spectrum of AT via spec(AT ) = {λ : (AT − λI) is noninvertible}. That
is, λ is in the spectrum if (AT −λI) has a nontrivial kernel or is not onto. For finite
matrices the two conditions are obviously equivalent, and we determine whether λ
is in the spectrum by seeking a nonzero eigenvector u satisfying (A− λI)u = 0. In
contrast, the matrix AT has no eigenvectors and its entire spectrum follows from
the second reason.

One can go a step further and compute the spectral measure of AT that
corresponds to the eigenvalue distribution for finite graphs. We will say more
about it in Section 7. But, for now, we return to the problem of computing the
spectrum of Td.

Theorem 5.2 (Cartier [Car72]). The spectrum of the infinite tree Td is

spec(AT ) = [−2
√

d − 1, 2
√

d − 1].

Partial Proof. (Friedman [Fri91])
Fix some vertex v ∈ V (Td) as the root of the tree. Then

λ ∈ spec(AT ) ⇐⇒ δv /∈ Range(λI − AT ),

where δv is the characteristic function of v,

δv(u) =
{

1 u = v
0 u �= v.

The necessity of this condition is obvious. Sufficiency is not hard either, but it will
not be proven here.

We wish to find out for which values of λ there is a function f ∈ l2 satisfying

(5) δv = (λI − A)f.

We say that a function f on V (Td) is spherical around the vertex v if f(u)
depends only on the distance (in the graph metric of Td) from u to v. The
spherical symmetrization of g ∈ l2 around v is a spherical function f such that∑

dist(u,v)=r f(u) =
∑

dist(u,v)=r g(u) for every r ≥ 0. It is easy to observe that if
g ∈ l2 is a solution to (5), then g’s spherical symmetrization f is in l2 and satisfies
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the same equation. We may therefore assume without loss of generality that f is
spherical. A spherical f is determined by a sequence of numbers {x0, x1, . . .} such
that f(u) = xi whenever dT (u, v) = i. This reduces (5) to the following recurrence:

λx0 = dx1 + 1
λxi = xi−1 + (d − 1)xi+1 for i ≥ 1.(6)

The solution to such a recurrence is xi = αρi
1 +βρi

2, where ρ1,2 = λ±
√

λ2−4(d−1)

2(d−1)

are the roots of the quadratic equation λρ = 1 + (d − 1)ρ2.
If |λ| < 2

√
d − 1 the roots are complex with absolute value 1/

√
d − 1. In this

case, λ ∈ spec(A) since f is not in l2. Indeed, |xi| = Θ((d−1)−i/2), and since there
are Θ((d − 1)i) vertices at distance i from v, it follows that ||f ||2 = ∞.

We claim that when |λ| > 2
√

d − 1 Equation (6) has a solution in l2, implying
that λ is not in the spectrum of A. To see that, observe that |ρ1| < 1/

√
d − 1 and

so if xi = αρi
1, then the resulting f belongs to l2 and satisfies Equation (6) for all

i > 0. It is left to verify that there is a value of α for which Equation (6) holds for
i = 0 as well. This additional condition reads λα = dαρ1 + 1, which is possible iff
λ �= dρ1. Indeed, |ρ1| < |λ|/2(d − 1) ≤ |λ|/d for all d ≥ 2. �

5.2. The Alon-Boppana lower bound.

5.2.1. Statement of the theorem. In this section we return to the question how
small λ2 can be in a large d-regular graph. A weak bound of this form was given in
subsection 2.5, and here we prove the Alon-Boppana lower bound λ2 ≥ 2

√
d − 1 −

on(1).

Theorem 5.3 (Alon-Boppana, Nilli [Nil91], Friedman [Fri93]). There exists a con-
stant c such that for every (n, d)-graph G of diameter ∆:

λ2(G) ≥ 2
√

d − 1 · (1 − c/∆2).

Since the diameter of an (n, d)-graph is Ω(logd−1 n), it follows that

Corollary 5.4. For every (n, d)-graph

λ2 ≥ 2
√

d − 1 · (1 − O(1/ log2 n)).

We present two proofs of this theorem. The first proof illustrates the moment
method, which we will encounter later in Section 7. We first define the tree
number t2k as the number of closed walks of length 2k that start and end at
some given vertex in Td. The key fact of the proof is that the analogous quantity
in any regular graph is ≥ t2k. We also use the fact that the spectral radius
ρ(Td) = max{|λ||λ ∈ spec(Td)} = 2

√
d − 1. This proof achieves a little less

than we desire: (i) it only bounds λ(A) = maxi≥2 |λi(A)|, and (ii) the resulting
error term is slightly weaker than in Theorem 5.3. The second proof yields tighter
estimates by computing the Rayleigh quotient of a certain function. This function
is an eigenfunction of a truncation of the tree.

5.2.2. Proof I: Counting closed walks in Td. Let A be the adjacency matrix of G.
Clearly, λ(A2k) = (λ(A))2k for every integer k, where λ(A) = maxi≥2 |λi(A)|. We
give a lower bound on λ(A2k) by estimating the Rayleigh quotient of the function
f = δs − δt, where s, t are two vertices at distance ∆ in G. That is f(s) = 1,
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f(t) = −1, and f(u) = 0 for any other vertex u. Since f is orthogonal to the first
eigenfunction, the constant function,

λ2k ≥ fA2kfT

||f ||2 =
(A2k)ss + (A2k)tt − 2(A2k)st

2
.

Choose k = �∆−1
2 �, so the negative term in the numerator vanishes. The positive

terms in the numerator count closed walks of length 2k that start and end at s and
t respectively and are therefore ≥ t2k. Consequently,

λ2k ≥ t2k.

The tree numbers t2k have been studied in great detail; see [McK81], and [Lub94].
Good estimates, a recursion, and their generating function are known, but all we
need here is a rough estimate. (Slightly more will be needed below, Lemma 7.3.)
Associated with every walk that starts and ends at the same vertex v in Td is a sign
pattern. Each step is associated a +1 or −1 according to its being directed either
away or toward v. Clearly such a sign pattern is characterized by two conditions:
(i) it sums up to zero, and (ii) the sum of each prefix is nonnegative. It is well
known that the number of such sequences of length 2k is the k-th Catalan number
Ck =

(
2k
k

)
/(k + 1) (see [vLW01]). Corresponding to every such sign pattern are at

least (d − 1)k walks, since there are exactly k occurrences of +1 in the sequence,
and at least d−1 choices for moving away from v regardless of the current position
of the walk. (For an accurate estimate of t2k note that a prefix that sums to zero
corresponds to a time when the walk reaches the vertex v, at which time the number
of choices for the next step is d, not d − 1). Therefore

λ2k ≥ t2k ≥ Ck · (d − 1)k = Θ((2
√

d − 1)2k · k−3/2).

Taking the 2k-th root and recalling that k = �(∆ − 1)/2� yield:

λ(A) ≥ 2
√

d − 1 · (1 − O(log ∆ / ∆)).

5.2.3. Proof II: Using spherical functions. This argument follows Friedman [Fri93].
Here we derive a lower bound on λ2(A) = maxf⊥1 fAfT /||f ||2 through a proper
choice of a test function f . The function we use is an adaptation of an eigenfunc-
tion for a truncation of Td. Given two vertices s, t at distance ∆, we construct a
function f that is positive on vertices at distance ≤ k = �∆

2 � − 1 from s, negative
on vertices at distance ≤ k from t, and zero elsewhere. The values of f are derived
from those of the eigenfunction g with maximal eigenvalue µ for the d-regular tree
of height k. We view s and t as roots of (separate) k-tall trees. We show that
f+, the positive part of f , satisfies Af+ ≥ µf+, and likewise for the negative part
Af− ≤ −µf−, so that fAfT ≥ µ||f ||2 and fAfT /||f ||2 ≥ µ. Finally, the positive
and negative parts of f are normalized so that

∑
f(x) = 0, so we can conclude

that λ2(A) ≥ µ.
We now get down to business. Let k = �∆

2 � − 1 and select two vertices s, t in G
at distance ∆. Classify the vertices according to their distance from s or t, along
with a no-man’s-land of the vertices that are far from both vertices:

Si = {v : d(s, v) = i } for i = 0, . . . , k,

Ti = {v : d(t, v) = i } for i = 0, . . . , k,

Q = V (G) \
⋃

0≤i≤k

(Si ∪ Ti).
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There are, of course, no edges between any Si and Tj .
Let Td,k denote the d-regular tree of height k, and let ATk

be its adjacency
matrix.

Claim 5.5. Let µ be the largest eigenvalue of ATk
. There is a unique function g :

V (Td,k) → R satisfying ATk
g = µg. The function g is nonnegative and spherically

symmetric.

Proof. This can be verified either directly or by appealing to the Perron Frobenius
theorem. The spherical symmetry can be verified as in the proof of Theorem 5.2. �

Let gi be the value that g takes on vertices at the i-th level. These numbers
clearly satisfy the following recursion and boundary conditions:

µg0 = dg1,

µgi = gi−1 + (d − 1)gi+1 for i = 1, . . . , k,

gk+1 = 0.(7)

Define f : V (G) → R as follows:

f(v) =

⎧⎪⎨⎪⎩
c1 gi v ∈ Si

−c2 gi v ∈ Ti

0 otherwise

,

where c1, c2 are nonnegative constants to be determined later. We next prove that
f gives the desired properties:

Lemma 5.6. If g is nonincreasing (as indeed will be shown below), then

(Af)v ≥ µfv for v ∈ ∪iSi,

(Af)v ≤ µfv for v ∈ ∪iTi.

Proof. Let v ∈ Si for some i > 0. Then of its d neighbors, p ≥ 1 belong to Si−1, q
neighbors to Si, and d − p − q to Si+1. Therefore,

(Af)v = p · c1 gi−1 + q · c1 gi + (d − p − q) · c1 gi+1.

Comparing with (7) and using the fact that g is nonnegative and nonincreasing, we
obtain

(Af)v = c1 · (pgi−1 + qgi + (d − p − q)gi+1)
≥ c1 · (gi−1 + (d − 1)gi+1)
= c1 · (ATk

g)i = c1µgi = µfv.

A similar argument works for v = s and for v ∈ ∪iTi to yield the required result. �
Corollary 5.7. λ2(A) ≥ µ = λ2(Tk).

Proof. First observe that the previous lemma implies that

fAfT =
∑

v∈V (G)

fv(Af)v

=
∑

v∈∪iSi

fv(Af)v +
∑

v∈∪iTi

fv(Af)v +
∑
v∈Q

fv(Af)v

≥
∑

v∈∪iSi

fvµfv +
∑

v∈∪iTi

fvµfv = µffT .
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Also, a proper choice of c1, c2 gives
∑

v∈∪iSi
fv = −

∑
v∈∪iTi

fv and hence f ⊥ 1.
Therefore, λ2(A) ≥ fAfT /||f ||2 ≥ µ as claimed. �

We still need to show that g is nonincreasing and prove a lower bound on µ. We
do that by giving an explicit solution h : {0, . . . , k + 1} → R to the recursion (7).
By Claim 5.5, h must coincide with g. We then show that h is nonincreasing and
derive the required lower bound on µ. Let

hi = (d − 1)−i/2 · sin((k + 1 − i)θ)

where the parameter θ will be determined below. It is easy to check that hk+1 = 0
and that h is nonnegative and decreasing provided that 0 < θ < π/(k + 1). We
claim that it satisfies the recursion (7), with µ = 2

√
d − 1 cos θ. For 0 < i ≤ k we

have:

hi−1 + (d − 1)hi+1

= (d − 1)−(i−1)/2 · [ sin((k + 1 − (i − 1))θ) + sin((k + 1 − (i + 1))θ)]

=
√

d − 1 · (d − 1)−i/2 · [sin((k + 2 − i)θ) + sin((k − i)θ)]

= 2
√

d − 1 · (d − 1)−i/2 sin((k + 1 − i)θ) cos θ = µ · hi.

The condition for i = 0 is that µh0 = dh1, or equivalently:

(2d − 2) · cos θ · sin((k + 1)θ) = d · sin(kθ).(8)

The smallest positive root of this equation, θ0, satisfies 0 < θ0 < π/(k + 1). This
is because the difference between the two sides of (8) changes sign between 0 and
π/(k + 1). Set θ = θ0, and so the recursion (7) is satisfied and h ≥ 0. Now
θ0 < π/(k + 1) ≈ 2π/∆, since k = �∆/2� − 1. By the Taylor expansion of the
cosine,

cos(θ0) > 1 − c/∆2,

yielding the required lower bound on µ with constant c ≈ 2π2.

5.2.4. Extensions of the Alon-Boppana theorem. A quantitative variation of the
Alon-Boppana theorem states that a constant fraction of the n eigenvalues must
exceed 2

√
d − 1 − ε for any fixed ε > 0.

Theorem 5.8 (Serre). For every integer d and ε > 0 there is a constant c = c(ε, d),
such that every (n, d) graph G has at least c ·n eigenvalues greater than 2

√
d − 1−ε.

There are several available proofs of this theorem, e.g., [DSV03], [Fri93], [Nil04].
These papers also give the proper credit to the theorem’s originator, J.-P. Serre. The
best known lower bound on c(ε, d), by [Fri93, Nil04], is approximately (d−1)−π

√
2/ε.

We present here an elegant proof by Cioabǎ [Cio06] that yields a slightly inferior
bound.

Proof. Let A be the adjacency matrix of G. We seek a lower bound on nε, the
number of eigenvalues larger than 2

√
d − 1 − ε. Consider the matrix (A + dI)k,

where the positive integer k will be specified below. On one hand

trace(A + dI)k =
n∑

i=1

(λi + d)k

≤ (2d)k · nε + (d + 2
√

d − 1 − ε)k · n.(9)
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On the other hand,

trace(A + dI)k =
k∑

j=0

(
k

j

)
· trace(Aj) · dk−j ≥

k/2�∑
l=0

(
k

2l

)
n · t2l · dk−2l.

Here we have eliminated the (positive) terms for odd j. We can use the estimates
of the tree numbers tj from subsection 5.2.2 to conclude

trace(A + dI)k ≥ (c′/k3/2) ·
k/2�∑
l=0,

(
k

2l

)
n · (2

√
d − 1)2l · dk−2l

= (c′/2k3/2) · n · [(d + 2
√

d − 1)k + (d − 2
√

d − 1)k]

≥ (c′/2k3/2) · n · (d + 2
√

d − 1)k

for some absolute constant c′ > 0. In combination with (9), this yields

nε

n
≥ (c′/2k3/2) · (d + 2

√
d − 1)k − (d + 2

√
d − 1 − ε)k

(2d)k
.

This expression is positive for k ≥ Ω(d
ε log(d

ε )), and the theorem follows. �

Open problem 5.9. What is the largest function c(ε, d) for which Theorem 5.8
holds?

Much less is known about the spectrum of irregular graphs. For example, the
largest eigenvalue satisfies λ1 ≥ d, where d is the average degree of the graph.
This is easily seen by considering the Rayleigh quotient of the constant function.
But, is it true that the second eigenvalue satisfies λ(G) ≥ 2

√
d − 1 − o(1)? Not

necessarily. The lollipop graph Ln has 2n vertices and is obtained from an n-
clique Kn and a path Pn+1 on n + 1 vertices by identifying some vertex of Kn

with an end vertex of Pn+1. It is not hard to check that unlike a regular graph,
the diameter and average degree of Ln are Θ(n), but λ(Ln) ≤ 2. The following
theorem shows that a simple additional condition yields the Alon-Boppana bound
for irregular graphs.

Theorem 5.10 (Hoory [Hoo05]). Let d, r ≥ 2 be integers. Suppose that the average
degree in the graph G is ≥ d whenever a ball of radius r is deleted from the graph.
Then λ(G) ≥ 2

√
d − 1 · (1 − c · log r/r), for some absolute constant c > 0.

5.3. Ramanujan graphs. In light of the Alon-Boppana bound (Theorem 5.3) we
define:

Definition 5.11. A d-regular graph G is Ramanujan if λ(G) ≤ 2
√

d − 1.

It is a major result discovered by Lubotzky-Phillips-Sarnak [LPS88] (who also
coined this term) and independently by Margulis [Mar88] that arbitrarily large d-
regular Ramanujan graphs exist when d − 1 is prime, and moreover they can be
explicitly constructed. Morgenstern [Mor94] extended this to the case when d − 1
is a prime power. Here we only state the result and describe the construction. The
book by Davidoff, Sarnak, and Valette [DSV03] offers a self-contained description of
the beautiful mathematics around it. Lubotzky’s book [Lub94] should be consulted
as well.
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Theorem 5.12 (Lubotzky-Phillips-Sarnak [LPS88], Margulis [Mar88], Morgen-
stern [Mor94]). For every prime p and every positive integer k there exist infinitely
many d-regular Ramanujan graphs with d = pk + 1.

The following suggests itself:

Conjecture 5.13. For every integer d ≥ 3 there exist arbitrarily large d-regular
Ramanujan graphs.

We will review in the following sections some recent attempts at solving this
problem using combinatorial and probabilistic methods.

We conclude this section with a description of the Ramanujan graphs Xp,q

from [LPS88]. Let p, q be distinct primes that are congruent to 1 mod 4. Then
Xp,q is a p + 1-regular graph of size Θ(q3). Their explicitness level depends on the
complexity of finding large primes.

Let us recall the definition of a Cayley graph. Let G be a group and let S
be a subset of G that is closed under inversion. The corresponding Cayley graph
C(G, S) is a graph with vertex set G and edge set {(x, xs) : x ∈ G and s ∈ S}.
In the present case, G = PGL(2, q), the group of 2 by 2 nonsingular matrices over
Fq, where we identify two matrices that are proportionate to each other. Fix some
integer i with i2 ≡ −1 (mod q). We define S as

S =
{(

a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

)
: a2

0 + a2
1 + a2

2 + a2
3 = p,

with odd a0 > 0 and even a1, a2, a3

}
.

By a theorem of Jacobi, there are exactly p + 1 such solutions (a0.a1, a2, a3) (over
the integers!), so |S| = p + 1. It can be verified that S is closed under inversion,
as needed. The graph Xp,q is obtained by taking the connected component of the
identity of C(G, S). (It can be shown that C(G, S) is either connected or has exactly
two equal connected components, depending on the quadratic residue symbol ( q

p )).
In both cases, every connected component of the 2nd largest eigenvalue is bounded
as in Theorem 5.12.

6. Spectrum and expansion in lifts of graphs

6.1. Covering maps and lifts. From a topological perspective graphs are one-
dimensional simplicial complexes. The notion of covering maps from topology turns
out to be quite useful for our subject. For one thing, Td is the universal covering
space of any d-regular graph. This explains the role of Td in Section 5. Also if there
is a covering map from a graph H onto a graph G, then every eigenvalue of G is also
an eigenvalue of H. We also show how lifts allow us to construct regular graphs with
near-optimal spectral gaps. We do not need anything substantial from topology, but
we do borrow some of the terminology and several of our observations are special
cases of more general phenomena in the theory of covering maps in topology.

We start by defining the notion of coverings and lifts.

Definition 6.1. Let G and H be two graphs. We say that a function f : V (H) →
V (G) is a covering map if for every v ∈ V (H), f maps the neighbor set ΓH(v) of
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v one to one and onto ΓG(f(v)). If there exists a covering function from H to G,
we say that H is a lift of G or that G is a quotient of H.

This definition is appropriate for simple graphs (with no parallel edges and self
loops) but can be easily extended to all graphs.

Figure 5. The three-dimensional cube is a 2-lift of the clique on
four vertices. The cover map identifies antipodal vertices in the
cube.

If f is a covering map onto G and v is a vertex in G, we call the set f−1(v) the
fiber of v. Similarly, if e ∈ E(G), we say that f−1(e) is the fiber of e. It is easily
verified that if G is connected, then every covering map of a finite graph onto G
has a well defined covering number n, such that all vertex and edge fibers have
fixed size n.

Let G be a connected graph. We denote by Ln(G) the set of all lifts of G with
covering number n, which we call n-lifts of G. There is a simple and convenient
description of the members of Ln(G). If H ∈ Ln(G), then V (H) = V (G)×[n]. That
is, the fiber of every v ∈ V (G) consists of the vertices (v, 1), · · · , (v, n) in V (H). To
define the edges of H, we associate with every edge e = (v, u) ∈ E(G) a permutation
πe from Sn. The fiber of the edge (u, v) consists of the edges ((u, i), (v, πe(i)))
for all i ∈ [n]. (Note that here we consider e = (u, v) as a directed edge, and
the permutation corresponding to (v, u) is the inverse π−1

e .) Thus every choice of
permutations in Sn, one for each edge in G, defines a member in Ln(G). This
also gives us a natural way to sample a random n-lift of G, as we elaborate in
subsection 7.3.3.

6.2. Eigenvalues - old and new. What can we say about the eigenvalues of lifts
of G? The eigenvalues of G are eigenvalues of its lifts as well. To see this, let
h : V (G) → R be an eigenfunction of G with eigenvalue λ, and let H cover G via
the map f : V (H) → V (G); then h ◦ f is an eigenfunction of H with the same
eigenvalue. Such an eigenfunction and the corresponding eigenvalue are considered
old. Thus if H is a lift of G, we talk about its old eigenvalues and eigenfunctions
which are inherited from G, and the rest of the eigenvalues and eigenfunctions which
are considered new.

Example 6.2. In the above example of the 3-dimensional cube and K4, the spec-
trum of the cube is composed of: the old spectrum {3,−1,−1,−1} inherited from
K4, and the new spectrum {1, 1, 1,−3}.
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This leads us to two simple but useful observations from [BL]. Since the eigen-
functions of G span the space of real functions on V (G) and since distinct eigen-
functions can always be chosen to be mutually orthogonal, we conclude:

Proposition 6.3. Let f : V (H) → V (G) be a covering map and let ψ be a new
eigenfunction of H. Then

∑
f(x)=v ψ(x) = 0 for every v ∈ V (G). In words, ψ sums

to zero on every fiber.

This leads to a particularly pleasing description of the spectrum for 2-lifts of G.
Let A = AG be the adjacency matrix of G. A signing Ã of A is a symmetric matrix
that is obtained by replacing some of the 1-entries in A by −1. There is a natural
1 : 1 correspondence between 2-lifts of G and signings of AG; namely, for every
edge e = (u, v) ∈ E(G) we define Ã(u, v) to be ±1 according to the permutation
πe being the identity or (2, 1) ∈ S2. It follows that there is a 1 : 1 correspondence
between the eigenfunctions φ of Ã and new eigenfunctions ψ of the 2-lift. The
correspondence is given by ψ(v, 1) = −ψ(v, 2) = φ(v) for every v ∈ V (G).

In particular:

Proposition 6.4. Let H be a 2-lift of G that is encoded by the matrix Ã. The new
eigenvalues of H are the eigenvalues of Ã.

These observations are used below (subsection 6.4) to construct graphs with a
near-optimal spectral gap.

6.3. The universal covering tree. Associated with every connected graph G is
its universal covering space Ĝ. This is an infinite tree that is uniquely defined
through the condition that every connected lift of G is a quotient of Ĝ. It is not
hard to explicitly construct Ĝ. Fix some vertex v0 in G. The vertices of Ĝ are in
1 : 1 correspondence with all non-backtracking walks in G starting at v0. That is,
all finite sequences v0, v1, . . . , such that vi is adjacent to vi+1 and vi �= vi+2 for all
i. Two vertices of Ĝ are adjacent if one walk is a single-step extension of the other.
It is easy to verify that:

Example 6.5. The infinite d-regular tree Td is the universal covering space of
every d-regular graph.

6.3.1. Irregular Ramanujan graphs? As we have already mentioned, the counterpart
of the present theory for irregular graphs is still quite poorly understood. It is not
even clear how to define an irregular Ramanujan graph. In particular, is there a
natural lower bound on λ(G) for an irregular graph? We recall that the spectral
radius of a (finite or infinite) graph H is defined via ρ(H) = sup{|λ||λ ∈ spec(H)}.
The following generalization for the Alon-Boppana lower bound is due to Greenberg
and Lubotzky [Gre95].

Theorem 6.6 (Greenberg-Lubotzky [Gre95]). Let {Gi} be a family of graphs cov-
ered by the same universal cover T . Then λ(Gi) ≥ ρ(T ) − o(1).

The proof is similar to the first proof we gave in the regular case, subsection 5.2.2.
One considers fA2kfT /||f ||2, where f is ±1 on two faraway vertices and zero else-
where. However, the numbers t2k of the d-regular tree are replaced by the number
of closed walks of length 2k from v to v in the universal cover T , which is at least
(ρ − o(1))2k.

This naturally suggests a definition of (not necessarily regular) Ramanujan
graphs.
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Definition 6.7. A graph G is Ramanujan if λ(G) ≤ ρ(Ĝ), in other words, if the
absolute value of all of G’s eigenvalues excluding λ1 are bounded by the spectral
radius of its universal cover.

If G is d-regular, then Ĝ = Td, so that ρ(Ĝ) = 2
√

d − 1, and this definition
coincides with the definition of d-regular Ramanujan graphs.11

A possible restatement of Theorem 5.12 is that if d − 1 is a prime power, then
infinitely many quotients of Td are Ramanujan graphs. Conjecture 5.13 posits that
the same holds for every d ≥ 3. Might it be that a similar statement holds for every
infinite tree T with infinitely many finite quotients? This is not so, as pointed out
by Lubotzky and Nagnibeda [LN98]. They constructed a tree T such that there
is a single graph G∗ that is covered by every finite quotient of T . Moreover, the
second eigenvalue of G∗ is larger than ρ(T ). Since this large eigenvalue is inherited
by all graphs covering G∗, none of them can be Ramanujan.

6.4. Nearly-Ramanujan graphs by way of 2-lifts. It seems plausible that un-
like the currently known proof of Theorem 5.12, a proof of Conjecture 5.13 would
have to resort to methods outside number theory. For this and for several other
reasons, it is a major challenge to develop combinatorial and probabilistic argu-
ments that can establish such results. Such an attempt was recently made by Bilu
and Linial [BL], as we now describe. We start from a small d-regular Ramanujan
graph, such as the complete graph Kd+1, and attempt to construct large d-regular
Ramanujan graphs by applying a series of 2-lifts. In view of Proposition 6.4, the
following conjecture would guarantee the success of this plan, and in particular it
would imply the correctness of Conjecture 5.13.

Conjecture 6.8. Every d-regular Ramanujan graph G has a 2-lift such that all
new eigenvalues are in the range [−2

√
d − 1, 2

√
d − 1].

Extensive computer experiments tend to suggest an even more daring conjecture.

Conjecture 6.9. Every d-regular graph G has a 2-lift such that all new eigenvalues
are in the range [−2

√
d − 1, 2

√
d − 1].

Equivalently,

Conjecture 6.10. Let A be the adjacency matrix of some d-regular graph. Then
A has a signing Ã with spectral radius ρ(Ã) ≤ 2

√
d − 1.

A somewhat weaker statement can be proven. It uses the Lovász Local Lemma, a
standard tool in the probabilistic method (see [AS00]) and an enumerative argument
to show:

Lemma 6.11. Let A be the adjacency matrix of some d-regular graph. Then A has
a signing Ã such that

xÃx ≤ O
(√

d log d · ‖x‖2
)

for every vector x in which each coordinate is −1, 0 or 1.

The main result of that paper is obtained now using Lemma 2.6:

11Definition 6.7 is not the only one possible. One can give a similar definition based on the
smallest positive eigenvalue of the Laplacian of G or based on the largest non-Perron eigenvalue
of the normalized adjacency matrix. A different direction is to consider the spectrum of the non-
backtracking adjacency operator or, equivalently, the Ihara zeta function of the graph; see [ST,
AFH] for a more detailed discussion.
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Theorem 6.12 (Bilu-Linial [BL]). For every d ≥ 3 there is a construction of a
mildly explicit family of (n, d, α)-graphs, with αd = O(

√
d log3 d).

The algorithmic aspects of this construction need some further elaboration, but
we refer the interested reader to the original paper.

7. The spectrum of random graphs

The probabilistic method is one of the most fruitful ideas in modern Discrete
Mathematics. The basic tenet of this method can be phrased as follows: It is in
general essentially impossible for a human to investigate a large graph (or other
discrete mathematical objects). However, it is possible and very beneficial to craft
certain ensembles of large graphs and investigate their typical properties. Specif-
ically, it is possible to introduce probability spaces whose elements are graphs. Any
graph parameter then becomes a random variable which can be investigated using
tools from probability theory. These probability spaces and these random variables
are being investigated in their own right (see e.g. the book [J
LR00]) or as means for
solving other problems (here [AS00] is the standard reference). This important idea
was first crystallized nearly a half century ago in a series of ground-breaking papers
by Erdős and Rényi, starting with [ER59]. These authors have introduced G(n, p),
which is a basic model of random graphs.12 To sample a graph from this distribu-
tion, start with n vertices. Independently, for every pair of vertices, introduce an
edge with probability 0 < p < 1. This important model is, however, not very useful
for our purposes, since we are interested mostly in regular graphs. Regular graphs
have only a tiny probability in the G(n, p) model, and different random models
are needed. Indeed it took about two decades of research in random graphs until
it was discovered how to sample uniformly (n, d) graphs (see [J
LR00], Section 9,
and [Wor99]).

In this section we study what the typical eigenvalues of random (n, d) graphs
look like. The first subsection deals with the bulk of the spectrum (where most
eigenvalues tend to be), and the second with the extreme eigenvalues (those that
define expansion). In both cases, this study parallels earlier investigations of the
spectrum of random matrices, as we mention. A central tool in both parts is the
trace method (or moment method) which we have already seen. This method is
particularly appropriate for the random setting. In the third subsection we consider
some variations of this study of random sparse graphs.

7.1. The bulk of the spectrum. Our focus has so far been the extreme eigen-
values of graphs, namely λ2 and λn, the study of which is rather challenging, as
we saw. It turns out that the bulk of the spectrum is more amenable to analysis.
Here is some of what we know about these parts of the spectrum. The adjacency
matrix of a graph is a real symmetric matrix, and a large body of work exists
about the typical spectra of such matrices. The grandfather of this whole area is

12This model has many important connections to statistical physics, some of which are related
to expansion in both the random graphs thus generated as well as in certain natural dynamics on
them, but these are beyond the scope of this article.
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Figure 6. Eigenvalue distribution, 2000×2000 symmetric matrix
with independent standard normal entries. The gray area is a 100
bin histogram, where the height is the portion of eigenvalues in the
respective bin. The black line is the prediction of Theorem 7.1.

“Wigner’s semicircle law”, which states that, under some conditions, the eigenval-
ues of a large random symmetric matrix with independent entries are distributed
close to a semicircle.

Theorem 7.1 (Wigner [Wig58]). Let An be an n×n real symmetric matrix, where
off-diagonal entries are sampled independently from the distribution F , and the
diagonal entries from the distribution G. Furthermore, assume that var(F ) =
var(G) = σ2 and that F and G have finite moments; i.e.

∫
|x|kdF (x) and∫

|x|kdG(x) are finite for all k. Define the empirical eigenvalue distribution as

Wn(x) =
1
n
|{i : λi(An) ≤ x}|,

where λ1(An) ≥ · · · ≥ λn(An) are the eigenvalues of An. Then for every x,

W (x) = lim
n→∞

Wn(2xσ
√

n) =
2
π

∫ x

−1

√
1 − z2 dz.

What about the analogous questions when we deal with the adjacency matrices
of random d-regular graphs? As can be seen in Figure 7, the eigenvalue distribution
no longer resembles a semicircle. Nevertheless, for large d, the distribution does
approach a semicircle. This behavior is explained by the following theorem of
McKay. In fact, this theorem applies not only to random graphs. It assumes
only that the graph in question has few short cycles. Specifically, let Ck(G) be
the number of cycles in G of length k. The theorem applies whenever Ck(G) =
o(|V (G)|) for every fixed k ≥ 3, a property that holds almost surely for random
d-regular graphs.

Theorem 7.2 (McKay [McK81]). Let Gn be an infinite sequence of d-regular graphs
such that Ck(Gn) = o(|V (Gn)|) for all k ≥ 3, where Ck(Gn) is the number of length
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Figure 7. Eigenvalue distribution, d-regular graph with 2000 ver-
tices. The gray area is a 100 bin histogram, where the height is
the portion of eigenvalues in the respective bin. The black line is
the prediction of Theorem 7.2.

k cycles in Gn. Define the empirical eigenvalue distribution as

F (Gn, x) =
1

|V (Gn)| |{i : λi(Gn) ≤ x}|.

Then for every x,

F (x) = lim
n→∞

F (Gn, x) =
∫ x

−2
√

d−1

d
√

4(d − 1) − z2

2π(d2 − z2)
dz.

Note that the limit distribution F (x) is supported on [−2
√

d − 1, 2
√

d − 1], which
is the spectrum of Td (Theorem 5.2). Here is the main idea: Since there are only a
few short cycles, the neighborhood of most vertices is (nearly) a tree. Consequently,
for most vertices v, the number of walks of length k that start and end at v roughly
equals tk, the analogous quantity for Td. To proceed, we need a good estimate for
tk (compare with the lower bound in subsection 5.2.2).

Lemma 7.3. For the infinite tree Td the number described above is

t2s+1 = 0, t2s =
s∑

j=1

(
2s − j

s

)
j

2s − j
dj (d − 1)s−j .

Proof. The first claim follows from the fact that a tree is a bipartite graph and
contains no odd length cycles. To determine t2s, consider any path of length 2s
from v to v. Associate with it a sequence 0 = δ0, δ1 · · · δ2s = 0, where δi is our
distance from v at time i. Clearly, δi are nonnegative integers and |δi − δi−1| = 1
for all i. The number of such sequences in which exactly j of the terms δ0 · · · δ2s−1

are 0 is (
2s − j

s

)
j

2s − j
.

This is a simple generalization of Catalan numbers (see [Fel68]). How many paths
correspond to such a sequence? Each such path takes s steps away from v and s
steps towards v; namely there are s indices each with δi+1−δi = 1 or −1 respectively.
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In a step towards v, the next vertex is uniquely determined. On steps away from
v we have d choices whenever δi = 0 (and the path resides at v), and d − 1 choices
at each of the remaining s − j times. The conclusion follows. �

If Ck(Gn) = o(|V (Gn)|) for every k ≥ 3, then for every constant r, almost every
vertex has a cycle-free r-neighborhood. Therefore there are (1 + on(1))|V (Gn)| ·
tr closed paths of length r in Gn. It follows that the function F (x) satisfies∫

xrdF (x) = tr for all r. In order to finish the proof of the theorem we need
to explicitly recover F (x) from its moments. This is accomplished by expanding F
in the basis of Chebyshev polynomials. The details are omitted.

7.2. The extreme eigenvalues. Quite a lot is known about the extreme eigen-
values of random symmetric matrices as well.

Theorem 7.4 (Füredi-Komlós [FK81], Vu [Vu05]). Let A = An be an n × n real
symmetric matrix with independent entries from a distribution F that has zero
expectation, variance σ2, and is supported on [−K, K] for some constant K. Then
with probability 1− on(1), all eigenvalues of A satisfy |λi| < 2σ

√
n+O(n

1
3 log n).13

The proof of this theorem is based on the trace method (a.k.a. the mo-
ment method), which we have already encountered in subsection 5.2.2. This old
workhorse of the theory stands as well behind Friedman’s Theorem 7.10 and many
other results. One estimates first, by combinatorial reasoning, the number
trace(A2k), which is a count of closed paths of length 2k in a certain (possibly
edge-weighted) graph. We subtract from it λ2k

1 and claim that if k is large enough,
then the difference is dominated by λ2k

2 , whence we can estimate |λ2|. On the one
hand, the larger k is, the more dominant the contribution of λ2k

2 and the better our
estimates become. However, as k grows, the enumeration of closed walks becomes
hairy, so one needs to strike a balance between these two conflicting needs.

Before we proceed to exemplify this method, let us mention an alternative ap-
proach to the same problem due to Kahn and Szemerédi [FKS89]. They show that
if A is the adjacency matrix of a random d-regular graph, then A’s Rayleigh quo-
tient is likely to be small on all points of an appropriate ε-net on the unit sphere.
Since the Rayleigh quotient of a matrix is a Lipschitz function on unit vectors, the
eigenvalues of A can be bounded. Lemma 2.6 and Lemma 6.11 suggest some ways
in which this method can be further advanced.

7.2.1. An illustration of the trace method. We now illustrate the power of the trace
method by proving the following upper bound on λ(G) = maxi≥2 |λi(G)| for a
random (n, d)-graph. A much stronger (possibly tight) result (Theorem 7.10) is
now known, but its proof is much too long and complex to be reviewed here.

Theorem 7.5 (Broder-Shamir [BS87]). The largest nontrivial eigenvalue of almost
every 2d-regular graph G satisfies λ(G) = O(d3/4).

There is a technicality that has to be addressed here on how to sample from the
space of 2d-regular graphs. In the proof below we sample such a graph using the
permutation model. A 2d-regular graph on n vertices in the permutation model
is constructed by independently choosing at random d permutations π1, ..., πd in

13There is a version where F has expectation µ > 0. In this case, the bound of the theorem
still holds for i ≥ 2. The remaining eigenvalue, λ1, asymptotically has normal distribution with
expectation nµ + σ2/µ and variance 2σ2.
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the symmetric group Sn and introducing an edge (v, πi(v)) for every v ∈ [n] and
i ∈ [d].

It turns out that this does not yield a uniform distribution on all (n, 2d)-graphs.
However the theorem is valid as stated, since it is known (see e.g. [J
LR00], Sec-
tion 9, and Wormald [Wor99]) that the distribution induced by the permutation
model is contiguous with the uniform distribution. Namely a family of events has
probability 1 − o(1) in one distribution iff it has probability 1 − o(1) in the other.
Put differently, both distributions agree on the notion of “asymptotically almost
sure events”. It is possible to sample uniformly from among the (n, 2d) graphs using
the so-called configuration model, but that would complicate matters significantly.
By contiguity this additional complication is unnecessary.

Proof. Let G be a random 2d-regular graph on n vertices in the permutation model.
Let P be the transition matrix of the random walk on G, i.e. the adjacency matrix
of G divided by 2d. Let 1 = µ1 ≥ µ2 ≥ ... ≥ µn be the eigenvalues of P , and
ρ = max{|µ2|, |µn|}. Since the eigenvalues of P k are {µk

i }n
i=1, we have ρ2k ≤

trace(P 2k) − 1 for any k. Therefore, by Jensen’s inequality, E[ρ], the expected
value of ρ satisfies

E[ρ] ≤ (E[ρ2k])1/2k ≤ (E[trace(P 2k)] − 1)1/2k.(10)

This basic inequality is at the heart of the trace method. It bounds the eigenvalues
by estimating the trace of powers of the matrix. These traces are combinatorial
quantities, counting the number of closed paths of length 2k in our (random) graph.

Observe that the paths in G starting at vertex 1 are in one to one correspondence
with words over the alphabet Σ = {π1, π

−1
1 , ..., πd, π

−1
d }. Just think of the directed

edge (v, πi(v)) (respectively (πi(v), v)) as being labeled by πi (respectively π−1
i ).

Now interpret a word as a sequence of directed edge labels to follow. Therefore

E[trace(P 2k)] = E[f.p.(ω)] = n · Pr[ω(1) = 1](11)

where ω is a uniformly chosen word in Σ2k and f.p.(ω) is the number of fixed points
of the permutation ω, i.e., the number of i with ω(i) = i.

Our analysis is in two parts. We first consider the structure of the word ω as an
element of the free group in d generators. We then investigate the actual walk cor-
responding to ω when these d generators take on particular (random) permutations
from Sn. For the first part it is natural to reduce this word: namely repeatedly
remove every two consecutive letters, one of which is πj and the other π−1

j . Let
ω′ = red(ω) be the reduction of ω. Clearly, Pr[ω(1) = 1] = Pr[ω′(1) = 1]. We show
that such a random reduced word is very unlikely to exhibit a nontrivial periodicity
of a type specified below. A word that is periodic in this sense is called a bad
reduced word.

For the second part we examine a fixed reduced good word ω′ and derive an
upper bound on Pr[ω′(1) = 1]. As mentioned, ω′ is fixed and the probability is
considered under the random choice of the d permutations π1, . . . , πd ∈ Sn. This is
relatively simple when ω′ is good and reduced.

A reduced word ω′ is bad if it has the form ω′ = ωaωj
b(ωa)−1 for some words

ωa, ωb and some j ≥ 2. Note that the empty word is bad. We estimate two
probabilities, whose sum is an upper bound on Pr[ω(1) = 1]:

(1) The probability that ω′ is a bad word.
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(2) The probability Pr[ω′(1) = 1] for some arbitrary fixed good reduced word
ω′.

The first probability is estimated in the next lemma.

Lemma 7.6. Let ω ∈ Σ2k be a random uniformly drawn word and let ω′ be its
reduced form. The probability that ω′ is bad is at most O(k2 · (2/d)k).

Proof. The idea is that for ω to have a bad reduction, at least half of its letters are
determined by the rest (either to get the cancellations or to guarantee periodicity).
Implementing this idea takes a bit of care.

Observe that all words ω of length 2k which reduce to a word of length 2l can be
generated as follows. Start with a string that consists of k− l left brackets and k− l
right brackets where each initial segment contains at least as many left brackets
as right brackets. The brackets in such a sequence can be paired up in a unique
allowable way. The level of an initial segment in this sequence is the (nonnegative)
difference between the number of left and right brackets that it contains. At every
point where the level is zero (including the positions to the left and to the right of
the whole sequence) place an arbitrary number of � symbols with a total of 2l �’s.
Note that the positions of the k− l left brackets within the length 2k word uniquely
determine the positions of the k − l right brackets and the 2l �’s. This is shown by
the following simple procedure: Scan the string from left to right and initially set
a variable level to zero. If the next position is occupied by a left bracket, increase
level by one. Otherwise, do as follows: If level = 0 place a � in this position. If
level> 0, place a right bracket in this position and reduce level by one.

It follows that the number of such sequences is at most
(

2k
k−l

)
. Now, we say that

a word ω ∈ Σ2k matches such a sequence of brackets and stars if two conditions
hold. The first is that every pair of matched brackets is assigned a letter and its
inverse. This specifies the cancellation steps that reduce ω to a word of length 2l.
The second requirement is that no additional cancellations are possible. We ignore
the second requirement all together.

The event we consider is that ω matches a specific bracket-star sequence with 2l
stars and that the reduced word ω′ is bad and has the form ωaωj

b(ωa)−1 for some
j ≥ 2. The probability of the first event is clearly bounded by (2d)−k+l (the letter
corresponding to each right bracket is uniquely specified). To bound the probability
of the second event, we specify the lengths of ωa and ωb. These already determine
the value of j, which, by assumption, is ≥ 2. Having specified the lengths |ωa| and
|ωb|, this probability is clearly bounded by (2d)−l since the first half of the reduced
word ω′ uniquely determines the second half. Finally, we observe that these two
events are independent since they concern a disjoint set of positions in the word ω.
Putting everything together yields the required bound:

Pr[ω′ is bad] ≤ k2
∑

l

(
2k

k − l

)
(2d)−k+l(2d)−l ≤ k2 · (2/d)k.

(One factor of k is for the choice of |ωa| and one for |ωb|.) �
Now we fix a good reduced word ω′ of length s ≤ 2k and estimate Pr[ω′(1) = 1].

The main conceptual idea of Broder and Shamir is that we expose the path that
we follow only “as we go”. It is here that the value of the permutation model in
the analysis becomes apparent. We gradually reveal the relevant information about
the random permutations π1, · · · , πd and their inverses as follows. Start with the
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vertex v0 = 1 and compute the path v0, v1, v2, · · · , vs one step at a time. For
i ≥ 1 we compute vi as follows. If σ ∈ Σ is the i-th letter in ω′, then we should
set vi = σ(vi−1). Call step i free if the value of σ(vi−1) was not “revealed” in
a previous step and is still undetermined. If this is the case and if t values of σ
were previously revealed, then vi is selected from among the n − t vertices not yet
assigned to the range of σ. A step that is not free is called forced.

Call step i a coincidence if it is free and moreover if (the randomly selected
vertex) vi coincides with a previous vertex on the path. Namely vi ∈ {v0, · · · , vi−1}.
Let Ci denote the event of a coincidence at step i. By what we said above Pr[Ci|v0 =
u0, . . . , vi−1 = ui−1] ≤ s/(n − s) for every u0 = 1, u1, . . . , ui−1. We see that the
probability of a coincidence at step i is at most s/(n− s) ≤ 2k/(n− 2k), regardless
of preceding history.

Clearly for the event that ω′(1) = 1 to hold, at least one coincidence must occur,
so we bound the probability of this event by the sum of the probabilities of two
events:

(1) At least two coincidences have occurred along the path.
(2) Exactly one coincidence has occurred and vs = 1.

The first probability is easily bounded as follows. Given the positions i, j of the
first two coincidences, as mentioned above, the probability that these coincidences
occur is at most Pr[Ci] · Pr[Cj |Ci] ≤ (s/(n − s))2. There are at most s2 such
positions, and so the total probability is at most s4/(n− s)2 = O(k4/n2). The last
inequality holds, since our choice will be that k = o(n).

The second probability is bounded in the following lemma.

Lemma 7.7. Let ω′ be a good reduced word of length s ≤ 2k, and consider the
path starting at 1 and following ω′. Then the probability of having exactly one
coincidence and ending at vertex 1 is at most 1

n−s+1 ≤ 1
n−2k .

Proof. A realization of ω′ is any walk corresponding to ω′ that is determined
by a choice of the permutations in Σ. Since ω′ is reduced, any initial segment of
such a realization preceding the (single) coincidence is a simple path. The step at
which the coincidence occurs turns this path into a cycle with a (possibly empty)
tail (see Figure 8). Since no more coincidences take place and since ω′ is reduced,
no additional edges will be visited, and all future steps are forced. In order to
eventually reach vertex 1, the walk could proceed in one of two ways: (i) revolve
around the cycle any (positive) number of times and then proceed to vertex 1 or (ii)
turn immediately to the end of the tail and terminate the walk at vertex 1 there.
The former possibility is ruled out since the word ω′ is good.

It follows that ω′ = ωaωb(ωa)−1. Here ωa may be empty and corresponds to the
walk along the tail and (ωa)−1 to the way back. The word ωb is nonempty and

1

Figure 8. A cycle with a tail.
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corresponds to the walk around the cycle. Moreover, ωb must be cyclically reduced,
and this condition uniquely determines the decomposition ω′ = ωaωb(ωa)−1. To see
this, let v be the vertex at which this first coincidence occurs. If the walk left v on
the first time with an edge labeled π, then this (first) coincidence cannot occur on a
π−1 edge. Let r = |ωa|+ |ωb|. It follows that the event ω′(1) = 1 is included in the
event that the (r− 1)-th step is a free move to a specific previously visited vertex,
v|ωa|. The probability of the latter is ≤ 1

n−r ≤ 1
n−s+1 , and the claim follows.

Adding the two bounds, the proof of the lemma follows. �

We now put the bounds of the two lemmas together, obtaining

Pr[ω(1) = 1] ≤ 1/(n − 2k) + O(k2 · (2/d)k) + O(k4/n2).

Choose k = 2 logd/2 n to minimize the upper bound. Substituting it back into (10)
and (11) yields E[ρ] ≤ (2/d)1/4 · (1 + o(1)). We finish up the proof by Markov’s
inequality, stating that a random variable is not likely to take on values much larger
than its expectation.

Broder and Shamir [BS87] have also observed that the random variable λ(G)
considered for the probability space of d-regular graphs G is highly concentrated.
Namely, for a large d-regular graph G, almost surely, λ(G) is within O(

√
d) of its

expected value. This is done using martingales and Azuma’s inequality. For more
on this very useful technique see e.g. [AS00, J
LR00].

7.3. Variations on a theme.

7.3.1. Back to the irregular case. Let us come back to Definition 6.7, which extends
the concept of Ramanujan graphs to the irregular case. It is tempting to consider
problems such as Conjecture 5.13, in this more general context. Is it true that for
every graph G, almost all sufficiently high lifts are Ramanujan?

To address this problem, Friedman [Fri03] rephrased the conjecture:

Conjecture 7.8. For almost all sufficiently high lifts of any graph G, the absolute
value of all new eigenvalues is bounded by ρ + o(1), where ρ is the spectral radius
of the universal cover of G.

To support his conjecture, Friedman proved the following theorem by generaliz-
ing the Broder Shamir argument of Theorem 7.5.

Theorem 7.9 (Friedman [Fri03]). Let G be a graph with a largest eigenvalue λ1,
and let ρ be the spectral radius of its universal cover. Then for almost all sufficiently
high lifts of G, the absolute value of all new eigenvalues is bounded by

√
λ1ρ+ o(1).

Indeed, this generalizes Theorem 7.5, since for 2d-regular graphs, the permuta-
tions model coincides with random n-lifts of a 2d-regular graph consisting of one
vertex with d loops. In this case, the old spectrum is the single eigenvalue λ1 = 2d
and ρ = 2

√
d − 1 = O(

√
d).

As mentioned before, even in the d-regular case, Conjecture 7.8 is not settled
yet.
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7.3.2. Are most regular graphs Ramanujan? A major result due to Friedman is a
relaxed version of Conjecture 5.13 and the regular case of Conjecture 7.8:

Theorem 7.10 (Friedman [Fri]). For every ε > 0,

Pr
(
λ(G) ≤ 2

√
d − 1 + ε

)
= 1 − on(1)

where G is a random (n, d)-graph.

To arrive at an educated guess whether most d-regular graphs are Ramanujan,
the most natural approach is to carry out some computer experiments. Such ex-
periments where conducted by Novikoff [Nov02] (see also [Sar04]) and by Hoory.
We show in the following table and in Figure 9 the results obtained by taking 1000
random 4-regular graphs in the permutation model for varying graph sizes up to
n = 400000.14

n 100 400 1000 4000
Pr(λ(G) < 2

√
3) 0.62 0.64 0.63 0.66

2
√

3 − median(λ(G)) 0.01519 0.00593 0.00361 0.00157
2
√

3 − mean(λ(G)) 0.01026 0.00487 0.00283 0.00129
std(λ(G)) 0.06376 0.01872 0.01012 0.00372

10000 40000 100000 400000
0.68 0.67 0.67 0.68
0.00100 0.00036 0.00019 0.00007
0.00086 0.00029 0.00017 0.00007
0.00190 0.00079 0.00042 0.00017

It is evident that the median and expected value of λ tend to 2
√

d − 1 from below
and that its standard deviation tends to zero with growing graph size. In [Nov02],
it is conjectured that, after normalization, the distribution of λ tends to a Tracy-
Widom distribution, [TW96]. Furthermore, they conjecture that the mean ap-
proaches 2

√
d − 1 faster than the standard deviation tends to zero and that the

probability of being Ramanujan tends to a constant strictly between zero and one.

7.3.3. More on random lifts. As pointed out in subsection 6.1, n-lifts of a given
connected graph can be generated at random. This is an entirely different source
of random graphs whose vertex degrees can be completely controlled. A recent
application for these “crafted” random graphs is the construction of error correct-
ing codes where belief propagation decoding outperforms codes generated by the
standard configuration model; see [Tho03, RU]. We illustrate below some of what
is known about combinatorial properties of random lifts. The following statements
refer to graphs in Ln(G), where G is a fixed connected graph with more edges than
vertices and where n is large. In particular “almost all” means that the statement
holds in the above space with probability 1 − on(1).

• For every G there is an εG > 0 such that almost all lifts of G have expansion
ratio ≥ εG, [AL06].

14λ(G) was calculated using the Matlab function eigs. The 3 smallest and largest values were
excluded in the calculation of the mean and the standard deviation.
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Figure 9. (a) Distribution of λ(G) for 1000 random 4-regular
graphs in the permutation model. Four 40 bin histograms of λ(G)
for graph sizes 10000, 40000, 100000, 400000. (b) Median, mean
and standard deviation of 2

√
d − 1 − λ(G) as a function of the

graph size n. A log-log graph, along with the best linear interpo-
lations.

• If δ ≥ 3 is the smallest vertex degree in G, then no graph in Ln(G) has
connectivity > δ and almost all graphs there are δ-connected, [AL02].

• There is a zero/one law about the existence of perfect matching. Here n is
even and large. All graphs G fall into two categories: one where almost all
n-lifts of G have a perfect matching, and the other where almost none of
G’s n-lifts have a perfect matching, [LR05].

There are also some results about chromatic numbers [ALM02], graph minors [DL],
and Hamiltonian circuits in lifts [BCCF05].

In analogy with Conjecture 5.13, it seems natural to ask questions such as:

Open problem 7.11. Fix a d-regular base graph, e.g., G = Kd+1. How likely is
it that all new eigenvalues of an n-lift of G fall in the range [−2

√
d − 1, 2

√
d − 1]?

7.3.4. The eigenvectors. There is very little we have to say here, except to point out
what seems at present like a total mystery worth investigating. Can anything be
said about the distribution of the coordinates in eigenvectors for any of the above
classes of random matrices? In particular:

Open problem 7.12. Fix an integer d ≥ 3 and consider large random (n, d)-
graphs. Clearly, all the coordinates of the first normalized eigenvector v1 equal
1/
√

n. What can be said about the distribution of the coordinates of v2? Specif-
ically, does v2 tend to be uniformly distributed on the unit sphere (in which the
distribution of these coordinates is nearly normal)?

We hesitate to say much here, but some preliminary numerical experiments car-
ried out by N.L. and S. H. suggest that the answer is negative. What is perhaps even
more intriguing is that there seems to be another (nonuniform) limit distribution
involved. At present we do not know much about these fascinating issues.
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8. The Margulis construction

In this section we return to the oldest explicit construction of a family of expander
graphs. This construction is still among the most elegant and most easy to generate
of all known constructions. Nevertheless, the simplest known proof that it is an
expander (only a few pages of basic linear algebra), which we present here, is still
subtle and mysterious. We recall an elementary approach to these graphs that is
mentioned in subsection 4.3. The concrete conjecture stated there suggests what a
more intuitive proof may look like.

We now turn to the construction. Recall from subsection 4.3 an infinite analog
of this construction. There we started with the action of two linear transformations
on the unit torus. Here, in the finite setting, we take essentially the same linear
transformations, together with their affine shifts (which serve as a discrete substi-
tute for continuity). These act on the finite torus (Zn)2. In Section 11 we will see
that the linear transformations themselves suffice for expansion, at least when n is
a prime. It will be viewed as the action of the group SL2(n) of 2 × 2 matrices of
determinant 1, which is generated by these two linear transformations (without the
affine shifts). That proof of expansion is, however, far from elementary.

Construction 8.1. Define the following 8-regular graph Gn = G = (V, E) on the
vertex set V = Zn × Zn. Let

T1 =
(

1 2
0 1

)
, T2 =

(
1 0
2 1

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
.

Each vertex v = (x, y) is adjacent to the four vertices T1v, T2v, T1v + e1, T2v + e2,
and the other four neighbors of v obtained by the four inverse transformations.
Note that all calculations are mod n and that this is an undirected 8-regular graph
(that may have multiple edges and self loops).

Theorem 8.2 (Gabber-Galil [GG81]). The graph Gn satisfies λ(Gn) ≤ 5
√

2 < 8
for every positive integer n.

We will, in fact, prove in full a slightly weaker bound on λ that is still smaller
than 8. As we saw in subsection 4.5, this already implies that the graphs Gn form
a family of expanding graphs.

Margulis [Mar73] proved the same conclusion for a closely related family of
graphs in 1973. However, his method was inherently existential (using the ma-
chinery of Kazhdan’s property (T)) and could not give an explicit lower bound on
the spectral gap. In 1981 Gabber and Galil [GG81] were able to derive a lower
bound on the gap. Their argument uses classical harmonic analysis. In 1987 Jimbo
and Marouka [JM87] improved it further using Fourier analysis on the group Z

2
n.

We present here a slight simplification of their proof, due to Boppana.
By the variational formula for the eigenvalues (subsection 4.5) we are trying to

prove that if f : Z2
n → R satisfies

∑
x f(x) = 0, then∑

(x,y)∈E

f(x)f(y) ≤ 5
√

2
2

∑
f2(x).

Taking into account the definition of the graph G, Theorem 8.2 can therefore be
restated as:
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Theorem 8.3. For any f : Z2
n → R satisfying

∑
z f(z) = 0, the following inequality

holds:

(12)
∑

z∈Z2
n

f(z) ·
[
f(T1z) + f(T1z + e1) + f(T2z) + f(T2z + e2)

]
≤ 5

√
2

2

∑
f2(x).

8.1. A detour into harmonic analysis. The intensifying connections between
harmonic analysis and discrete mathematics are among the most wonderful recent
developments of both fields. We are unable to do here any justice to this domain
of research. The reader can learn the fundamentals of harmonic analysis from
excellent texts such as Körner [Kör89]. Certain parts of this area are covered by
lecture notes available at www.cs.huji.ac.il/∼nati/PAPERS/uw/.

Below we collect some of the basic tools that we need to proceed with our anal-
ysis. None of this is hard, and the proofs can be found in the above references
(or be carried out on the reader’s own). We will consider similar issues in a more
general context in Section 11, namely, Fourier analysis on general groups, a.k.a rep-
resentation theory. Here we confine ourselves to Abelian groups. It is remarkable,
though, that we are able to investigate the action of the (non-Abelian) group of
2 × 2 matrices using “only” harmonic analysis.

8.1.1. Characters.

Definition 8.4. A character of a group H is a homomorphism χ : H → C
�; that

is χ(gh) = χ(g) · χ(h) for all h, g ∈ H.

Note that this definition implies that for finite groups H the range of any char-
acter is actually contained in the unit circle, namely complex numbers of absolute
value 1. Also, when H is Abelian (as is the case in the present section), we denote,
as customary, its group operation by +.

Here are some examples of characters.

• The trivial character maps all elements of H to 1.
• For H the cyclic group Zn, the characters are χk(h) = e2πikh/n. (The

trivial character corresponds to k = 0.)
• For H = (Z2)d: The characters are χa(x) = (−1)<a,x>, where a =

(a1, . . . , ad) ∈ (Z2)d and < x, y > =
∑

i xiyi is the inner product. (The
trivial character corresponds to a = 0d.)

• The group that is most relevant for the present section is H = Z2
n. It has

a character χb for each b = (b1, b2) ∈ Z2
n, where χb(a1, a2) = ωa1b1+a2b2 .

Here ω = e2πi/n is the primitive n-th root of unity.

The collection F of all complex functions on H is a linear space with inner
product 〈f, g〉 =

∑
x∈H f(x)g(x). Fourier analysis on H entails expanding functions

in F as linear combinations of characters.

Proposition 8.5. Every finite Abelian group H has |H| distinct characters which
can be naturally indexed as {χx}x∈H . They form an orthonormal basis of F . Thus
every f : H → C can be uniquely expressed as f =

∑
x∈H f̂(x)χx, where f̂ : H → C

is the discrete Fourier transform of f ,

f̂(x) = 〈f, χx〉 =
∑
y∈H

f(y) · χx(y).
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Therefore, in the case of interest here, H = Z2
n, the discrete Fourier transform

of f takes the form
f̂(x) =

∑
b

f(b) · ωb1x1+b2x2 .

In the following proposition we collect some of the basic properties of the Fourier
transform. We state the results for the group Z

2
n, though most of these claims apply

just as well for any Abelian group.

Proposition 8.6. Let f, g ∈ F . Then the following statements hold:

(a)
∑

a∈H f(a) = 0 ⇔ f̂(0) = 0.

(b) 〈f, g〉 = 1
n2 〈f̂ , ĝ〉 for any f, g ∈ F .

(c) A special case of (b) when f = g, is Parseval’s identity:∑
a∈H

|f(a)|2 =
1
n2

∑
a∈H

|f̂(a)|2.

(d) The inverse formula:

f(a) =
1
n2

∑
b∈H

f̂(b)ω−〈a,b〉.

(e) The shift property:15 If A is a nonsingular 2 × 2 matrix over Zn, b ∈ Z2
n

and g(x) = f(Ax + b), then

ĝ(y) = ω−〈A−1b,y〉f̂((A−1)T y).

8.2. Back to the proof. To prove Theorem 8.3, we express inequality (12) using
the Fourier coefficients of f . The condition

∑
z f(z) = 0 is restated as f̂(0, 0) = 0.

Using Parseval’s identity and the behavior of the transform under composition with
an affine transformation, we can rewrite Theorem 8.3 in the form below. It would
suffice to show this with F the Fourier transform of f , but we prove this claim in
its generality.

Theorem 8.7. For every F : Z2
n → C with F (0, 0) = 0,∣∣∣∣∣∣

∑
z=(z1,z2)∈Z2

n

F (z) ·
[
F (T−1

2 z)(1 + ω−z1) + F (T−1
1 z)(1 + ω−z2)

] ∣∣∣∣∣∣
≤ 5

√
2

2

∑
z∈Z2

n

|F (z)|2.

We observe that using Cauchy-Schwartz to upper bound the inner product would
give a trivial upper of 4 times the L2 norm of F , and the whole point of course is
that 5

√
2

2 is strictly less than 4. We also note that this can happen only if the two
vectors in this inner product are not collinear, which is the main thing to prove.

Define G : Z2
n → R via G = |F |. By the triangle inequality and the identity

|1 + ω−t| = 2 | cos(πt/n)|, it suffices to prove:

15This shows how the Fourier Transform behaves under a composition with a nonsingular affine
transformation. It is this relation which makes it possible to analyze the non-Abelian group action
of 2 × 2 matrices based on Fourier analysis of the Abelian group (Zn)2.
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Theorem 8.8. For every nonnegative function G : Z2
n → R with G(0, 0) = 0:

(13)
∑

2G(z) ·
[
G(T−1

2 z) · | cos(πz1/n)| + G(T−1
1 z) · | cos(πz2/n)|

]
≤ 5

√
2

2

∑
G2(z)

where the summations are over z = (z1, z2) ∈ Z2
n.

We seek to bound the terms on the left by squares that match the terms on the
right. We will do this by means of the elementary inequality 2αβ ≤ γα2 + γ−1β2

that holds for any nonnegative α, β, and γ. The key will be to choose γ in a clever
way; it will not be constant, but rather a mapping γ : (Z2

n)2 → R.
How should we choose γ? First note that setting γ to be identically 1 is problem-

atic for small z1, z2 where the cosines are near 1. That would yield the inequality
with a coefficient of 8, which is just what we wanted to avoid. This suggests,
though, that we let γ take only values close to 1. The idea is to define a partial
order on Z2

n and let γ satisfy:

γ
(
(z1, z2), (z′1, z

′
2)
)

=

⎧⎪⎨⎪⎩
α if (z1, z2) > (z′1, z′2)
1/α if (z1, z2) < (z′1, z

′
2)

1 otherwise.

Here α should be a constant slightly bigger than 1. Indeed we set α = 5/4, so
that γ takes only the values 1, α = 5/4 and 1/α = 4/5. This definition implies that

γ(x, y) · γ(y, x) = 1,(14)

for every x, y ∈ Z2
n. We write

2G(x)G(y) ≤ γ(x, y)G2(x) + γ(y, x)G2(y)

to derive the following upper bound on the left side of (13):∑
z∈Z2

n

| cos(πz1/n)| ·
[
γ(z, T−1

2 z)G2(z) + γ(T−1
2 z, z)G2(T−1

2 z)
]

+ | cos(πz2/n)| ·
[
γ(z, T−1

1 z)G2(z) + γ(T−1
1 z, z)G2(T−1

1 z)
]
.

So far everything applies to any linear transformations T1, T2. We now use the
fact that they are triangular. The exact choice of the matrices will come in only
later. We use the fact that z2 is invariant under T1 and likewise with z1 and T2.
Inequality (13) would follow from:∑

z∈Z2
n

G2(z) ·
(
| cos(πz1/n)| ·

[
γ(z, T2z) + γ(z, T−1

2 z)
]

+| cos(πz2/n)| ·
[
γ(z, T1z) + γ(z, T−1

1 z)
] )

≤ 5
√

2
2

∑
z∈Z2

n

G2(z).

Since this should hold for every G, let us examine the case where G is nonzero on
a single point z �= (0, 0). If the present approach to proving Theorem 8.2 is viable,
then it should work term by term. Thus our proof will succeed if our function γ



EXPANDER GRAPHS AND THEIR APPLICATIONS 507

 z
1

 z
2

 (n/2,0) (−n/2,0)

 (0,n/2)

 (0,−n/2)

Figure 10. The diamond.

satisfies

| cos(πz1/n)| ·
[
γ(z, T2z) + γ(z, T−1

2 z)
]
+ | cos(πz2/n)| ·

[
γ(z, T1z) + γ(z, T−1

1 z)
]

≤ 5
√

2
2

(15)

for every z = (z1, z2) ∈ Z2
n \ (0, 0).

We split the proof into two domains. Outside the diamond in Figure 10
we overestimate all the γ terms by α = 5

4 . As we verify below, in this range
| cos(πz1/n)| + | cos(πz2/n)| ≤

√
2, which implies the necessary inequality. Let us

assume z1, z2 are in the first quadrant. The other cases follow similarly. Since
cos(πz2/n) is decreasing and since we are outside the diamond, this expression is
maximized on the boundary of the diamond z2 = n/2 − z1, where cos(πz2/n) =
sin(πz1/n). Consequently, cos(πz1/n) + cos(πz2/n) = cos(πz1/n) + sin(πz1/n) ≤√

2, as needed.
When (z1, z2) is inside the diamond, we just bound the cosines by 1 and wish

to prove that

γ(z, T1z) + γ(z, T−1
1 z) + γ(z, T2z) + γ(z, T−1

2 z) ≤ 5
√

2
2

.(16)

That will follow from the following claim:

Proposition 8.9. There is a partial order on Z2
n such that for every (z1, z2) inside

the diamond, either:
Three of the four points T1z, T2z, T−1

1 z and T−1
2 z are > z and one is < z

or
Two of the four points T1z, T2z, T−1

1 z and T−1
2 z are > z and two are incomparable

with z.

In the first case, the left-hand side of (16) is 3/α + α, while in the second case it
is 2/α+2. Since α = 5/4, the left-hand side of (15) is bounded by 3.65. This is not
as good as 5

√
2/2 = 3.53 . . ., but it does prove that the graphs are a family of good
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expanders. A different choice for α and a more careful analysis of the inequality
inside the diamond yield the 5

√
2/2 bound.

To define the partial order on Z2
n, we use the convention that our variables take

values in the interval [−n/2, n/2). Say that (z1, z2) > (z′1, z′2) if |z1| ≥ |z′1| and
|z2| ≥ |z′2| and at least one of the inequalities is strong.

We know how to verify Proposition 8.9 only by a case analysis. It is easy to
verify that if |z1| = |z2|, then the second case of the proposition holds, so we assume
without loss of generality that |z1| > |z2|. As mentioned, the second coordinate of
T±1

1 z is z2 and likewise with T±1
2 and z1. So in each case there is only one inequality

to analyze. By symmetry we may assume that z1 > z2 ≥ 0, and since we are inside
the diamond, z1 + z2 ≤ n/2. It follows that |z1 − 2z2| < |z1|, so T−1

1 z < z. The
other three points T1z, and T±1

2 z are > z since |z1+2z2| > |z1| and |z2±2z1| > |z2|.
Consequently the first case of the proposition holds.

9. The zig-zag product

In this section we introduce a new kind of graph product called the zig-zag
product. We show that the zig-zag product of two expanders is a (not much
worse) expander as well. We start by showing how this fact leads to an iterative
construction of an explicit family of expanders. We then present the proof of this
fact.

We already know that a given graph is an expander iff the random walk on that
graph mixes rapidly. As we discussed in subsection 3.1.2, it is possible to estimate
the expansion ratio of an (n, d)-graph G by considering how rapidly the entropy of
the random walk on G converges to log n. This suggests an interesting perspective
of zig-zag products which we discuss as well.

This combinatorial method for constructing expanders was suggested by Rein-
gold, Vadhan and Wigderson in [RVW02]. It has led to other constructions, such
as expanders which beat the eigenvalue bound (i.e. have better expansion than
implied by their spectral gap) and new Cayley expanders. Both of these will be
discussed in later sections. We conclude this section with a remarkable recent ap-
plication of the zig-zag product to complexity theory, namely, Reingold’s result
SL = L. This means that there is a deterministic algorithm using only S units of
working memory that can explore every graph of size eO(S).

9.1. Introduction. As in earlier sections we consider an (n, d)-graph G = (V, E)
with adjacency matrix A = A(G). We also recall the notation Â = 1

dA(G), the
transition matrix of the random walk on G. Also, if G is an (n, d, α)-graph, then
Theorem 4.11 gives a lower bound (1−α)d/2 ≤ h(G) on h(G), the expansion ratio
of G.

The k-th power Gk = (V, E′) is a graph on the same vertex set where we put
an edge (u, w) ∈ E′ for every path of length k in G from u to w. The adjacency
matrix of Gk is just the k-th power of the adjacency matrix of G, whence Gk is an
(n, dk, αk)-graph.

The zig-zag product, which is denoted by ©z , is an asymmetric binary operation.
The product of an (n, m)-graph and an (m, d) graph is an (mn, d2)-graph. The
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main result is that the product of two expanders is an expander. We can use this
result as a “black box” even before we actually define the zig-zag product.

Theorem 9.1 (The Zig-Zag Theorem, Reingold-Vadhan-Wigderson [RVW02]).
Let G be an (n, m, α)-graph and H be an (m, d, β)-graph. Then G ©z H is an
(nm, d2, ϕ(α, β))-graph where the function ϕ satisfies the following:

(1) If α < 1 and β < 1, then ϕ(α, β) < 1.
(2) ϕ(α, β) ≤ α + β.
(3) ϕ(α, β) ≤ 1 − (1 − β2) · (1 − α)/2.

Since these bounds depend only on the spectral gaps of G and H, the first bound
indeed has the meaning alluded to above: zig-zag takes two expanders into another
expander.16

The quantitative bounds (2) and (3) are crucial for applications. The former is
useful when α, β are small, and the latter when they are large. We show below
how to use bound (2) on ϕ for the explicit construction of a family of expander
graphs, and in the last section we show how Reingold used bound (3) on ϕ for his
proof that SL = L. The definition and analysis of the zig-zag product appear in
subsection 9.3.

9.2. Construction of an expander family using zig-zag. Before we proceed to
the definition, let us show that zig-zag products can be used to explicitly construct
a family of constant degree expanders. To generate that infinite family we need one
building block: a fixed size expander of certain parameters.

Let H be a (d4, d, 1/4)-graph for some constant d. Note that there is a proba-
bilistic proof (for example, an adaptation of Theorem 7.5) that such an expander
exists, and since d is constant, one can find it by an exhaustive search in constant
time. This is a brute-force argument. For a more efficient construction that uses the
fact that the degree is quite large in terms of the number of vertices, see [RVW02].

Using the building block H, we inductively define the infinite sequence Gn by:

G1 = H2, Gn+1 = (Gn)2 ©z H for n ≥ 1.(17)

We claim that this sequence is an expander family:

Proposition 9.2. The graph Gn is a (d4n, d2, 1/2)-graph for all n.

Proof. For n = 1 this follows from the definition. We proceed by induction and
assume that (Gn)2 is a (d4n, d4, 1/4)-graph. When we zig-zag it with H (note that
the degree of (Gn)2 equals the size of H, as required) it follows from the second
bound on ϕ in Theorem 9.1 that Gn+1 is a (d4(n+1), d2, 1/2)-graph. �

The observant reader must have noticed that this construction is only mildly
explicit in the sense of Definition 2.3. To make it strongly explicit one can inter-
leave the construction in every iteration with another operation: tensoring of Gn

with itself. This provides a much faster growth of these graphs. For more details
see [RVW02].

16The converse is also true: it is easy to see that ϕ(α, β) ≥ max{α, β} and so zig-zag cannot
improve the expansion of the input graphs.
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9.3. Definition and analysis of the zig-zag product. Let G be an (n, m, α)-
graph and H be an (m, d, β)-graph. For every vertex v ∈ V (G) we fix some num-
bering e1

v, . . . em
v of the edges incident with v. Also, we regard the vertex set of

H as the set [m] = {1, . . . , m}. The vertex set of G ©z H is the Cartesian prod-
uct V (G) × V (H). It is convenient to think of this vertex set as being created by
replacing every vertex v in G with a “cloud” of m vertices (v, 1), . . . (v, m), one
for every edge incident with v. To describe the edges of the product graph, it is
easier to first describe the edges of another graph, G©r H (called the Replacement
product) on the same vertex set. Figure 11 is useful for the purpose of explaining
both constructions.

The edges of G ©r H (shaded lines in the figure) are simply the union of the
original edges of G (these are the wiggly edges, now going between clouds) and n
copies of the edges of H, one copy per cloud (these are the dashed edges). The
edges of G ©z H arise from walks of length three of a “zig-zag” nature in G ©r H:
dashed-wiggly-dashed. These edges are drawn as solid lines in Figure 11. More
formally:

Definition 9.3. G©z H = (V (G) × [m], E′), where ((v, i), (u, j)) ∈ E′ iff there are
some k, l ∈ [m] such that (i, k), (l, j) ∈ E(H) and ek

v = el
u.

Figure 11. The zig-zag product of the grid Z
2 with the 4-cycle.

A few remarks are in order about these constructions. The replacement product
described above (when H is a cycle) is well known in graph theory. It is being used
often for the purpose of reducing vertex degrees without losing connectivity. Such
an argument is used to show for quite a few open problems in graph theory that
it suffices to solve the problem for 3-regular connected graphs. (See an example of
this below in subsection 9.5.) Gromov [Gro83] has studied the expansion of this
product of a d-dimensional cube with an appropriate lower-dimensional cube. In a
different context (analysis of expansion in Markov chains via decomposition, which
may be viewed as reversing the replacement product), Martin and Randal [MR00]
proved the third bound on ϕ in Theorem 9.1 for the replacement product (the
second bound need not hold for the replacement product).
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Here is an interesting special case of the zig-zag product. Vizing’s theorem says
that the edges of an m-regular graph can be colored with m + 1 colors so that
incident edges are colored with different colors. Many families of graphs are known
where already m colors suffice. Notice that the graph G ©z H depends on the
arbitrary labels we assign to the edges at each vertex. When G’s edges can be
m-colored, then we can label each edge by its color. It is easy to verify that in this
case G©z H is a lift of H2 in the sense of Section 6. So far we have not been able to
take advantage of the similarity between these two methods of constructing graphs.

Proof of the zig-zag theorem. We prove here only a weaker version of the second
bound on ϕ. In particular this proof gives ϕ ≤ α + β + β2, which suffices for the
expander construction. The stronger bounds stated in Theorem 9.1 have a complex
proof in [RVW02] but were greatly simplified in [RTV05].

Clearly G ©z H is an (mn, d2)-graph. It is convenient to estimate the spectral
gap by considering the random walk on G ©z H. Each step in this walk can be
conveniently split into three parts: (i) a random step on an edge within a cloud, (ii)
a deterministic step on an edge connecting two clouds and (iii) another random
step within a cloud. We can now write down the transition matrix Z of the random
walk on G ©z H. Let B and B̂ be the adjacency matrix of H and the transition
matrix of the corresponding random walk respectively. The random steps (i) and
(iii) are done on n disjoint copies of H, so the corresponding transition matrix is
B̃ = B̂ ⊗ In. In the deterministic step (ii) we move from a vertex (v, k) to the
unique vertex (u, l) for which ek

v = el
u. Consequently, this step is carried out by

multiplying with the matrix P which is a permutation matrix of an involution:

P(v,k),(u,l) =
{

1 if ek
v = el

u

0 otherwise.

It follows that Z = B̃P B̃. The graph G©z H is regular, so the constant vector 1mn

is an eigenvector. Therefore what we are claiming is that |fZf |/||f ||2 ≤ α+β +β2

for all f ⊥ 1mn.
We next seek a way to decompose f so as to reflect the fact that V (G©z H) =

V (G)×[m]. Define f‖ as the average of f on clouds, viz., f‖(x, i)= 1
m

∑
j∈[m] f(x, j).

Define f⊥ via f⊥ = f − f‖. Clearly f⊥ sums up to zero on each cloud. Let us
expand

|fZf | = |fB̃P B̃f |
≤ |f‖B̃P B̃f‖| + 2|f‖B̃P B̃f⊥| + |f⊥B̃P B̃f⊥|.

Two simplifications follow from the fact that B̃ is a direct sum of n copies of B̂.

• Since B̂1m = 1m, it follows that B̃f‖ = f‖.
• By assumption, ‖B̂u‖ ≤ β‖u‖ whenever u ⊥ 1m and f⊥ sums to zero on

every cloud. Therefore, ||B̃f⊥|| ≤ β||f⊥||.
In order to deal with f‖, define the real function g on V (G) via g(v) =

√
mf‖(v, i)

(this does not depend on i, of course). Note that with this definition we have
‖g‖2 = ‖f‖2. The definition of P implies that f‖Pf‖ = gÂg where Â = ÂG is the
transition matrix of the random walk on G. But f‖ ⊥ 1mn implies that g ⊥ 1n

and hence that gÂg ≤ α‖g‖2. Consequently, |f‖Pf‖| ≤ α‖f‖‖2. Also, both B̃ and
P are stochastic matrices and are therefore contractions in l2. Putting all of this
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together we conclude

|fZf | ≤ α||f‖||2 + 2β||f‖|| · ||f⊥|| + β2||f⊥||2.

But ‖f‖2 = ‖f‖‖2 + ‖f⊥‖2, so the maximum of this quadratic form is the large
eigenvalue of the matrix (

α β
β β2

)
.

The conclusion follows. �

9.4. Entropy analysis. We return to the perspective suggested in subsection 3.1.2
and consider the graph G©z H when both G and H are good expanders. Why is it
that entropy grows with each random step on G©z H? The intuition below really
explains that very informally. At issue is the fact that entropy can no longer grow
when the distribution is uniform. As above, we view each step as made up of three
substeps: A random step (“zig”) in one copy of H, then a deterministic step to
a neighboring cloud, and another random step in the new copy of H. Note that
steps 1 and 3 are independent random steps on H. If the conditional distribution,
restricted to one of these two clouds, is far from uniform, then the entropy grows by
virtue of H’s expansion. The other two steps cannot harm this, since the entropy
never decreases when we multiply by a stochastic matrix.

What is more curious is the situation where on a typical cloud the distribution is
nearly uniform. In this case Step 1 cannot increase the entropy since the restriction
of the distribution to the cloud remains nearly uniform. To see what happens, recall
that V (G©z H) = V (G)×V (H) and consider the two marginal distributions pG and
pH for p. Since the distribution on most clouds is near uniform, the (deterministic)
middle step on G ©z H (which uses the cloud value to determine which edge to
follow to a neighboring cloud) is then like a real random step on G. Consequently,
and since G is an expander, the entropy of pG increases. But this middle step
is a permutation on V (G ©z H), so the entropy of the whole distribution remains
unchanged. It follows that the entropy of pH must have decreased. That means
that in Step 3 we are in the good case, where the conditional distribution on clouds
is far from uniform, and the entropy increases due to the expansion of H. Thus the
key is that Step 2 is simultaneously a permutation (so that any progress made in
Step 1 is preserved) and an operation whose G-marginal is simply a random step
on G.

The linear algebra proof we gave for the zig-zag theorem can be seen as a formal
statement of this intuition. Other papers in the area such as [RTV05] follow this
approach even more closely. This is particularly helpful in establishing the third
bound in Theorem 9.1.

9.5. An application to complexity theory: SL = L. Assume you arrive in an
unfamiliar city and you do not have a map. You would like to get to your hotel
(whose street name you know). It is natural to start exploring, hoping to cover
every street including the one your hotel is on (an equivalent problem is finding
the exit from a maze). Naturally, you can create your own map of the city, which
will guarantee that you do not go around in loops. But that takes a lot of memory,
linear in the size of the city. Suppose you don’t have that. All you can remember
is where you are, the street name of your hotel, and perhaps a few more items of
that magnitude - in short, only logarithmic space in the size of the city.
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Formally, this is cast as the problem of exploring a given undirected graph G (or
even determining if there is a path between two given vertices s and t).17

An important step towards the solution was made by Aleliunas, Karp, Lipton,
Lovász, and Rackoff [AKL79]. They showed that this problem can be solved by a
probabilistic logspace algorithm.18 To determine if s and t are connected, one
simply performs a polynomial length random walk starting at s and checks if the
walk ever reaches t.

With all the background we have covered so far, the analysis of this result is
simple, so let us sketch it. First observe that the algorithm uses only logarithmic
memory: all it needs to remember is its current position and the goal t. As for the
time bound, let us first note that we can assume without loss of generality that the
graph is regular. (E.g. replace each vertex v by a cycle of length d(v), the degree of
v, as in the replacement product described above. This makes the graph 3-regular,
maintaining connectivity in the natural way.) Now using the connection between
edge expansion h(G) (which is at least Ω(1/n)) in every connected 3-regular graph
with n vertices) and the eigenvalue, we conclude via Theorem 4.11 that it must be
an (n, 3, α)-graph, with α < 1−Ω(1/n2)). Thus a random walk of length O(n3) will
get exponentially close to the uniform distribution, and if we repeat it n2 times,
resulting in a walk of length n5, we will not miss a single vertex in this connected
component, except with exponentially small probability.

A natural approach to this problem is to try to derandomize this probabilistic
algorithm: namely, to generate deterministically a walk which explores all vertices
in every connected graph. This has, indeed, been tried often (see [Rei05] for back-
ground). A key to the success of Reingold’s approach was an ingenious application
of the zig-zag product.

As mentioned two paragraphs earlier, we can assume the input graph G has
constant degree D, of some fixed D of our choice (e.g. we can add self loops to the
3-regular graph mentioned there). The idea of the proof is the following. If each
connected component of the graph G is an expander graph, then each component
has a logarithmic diameter. Then one can enumerate over all the logarithmically
long paths starting at s and check if one of them arrives at t. In short, for graphs
whose components are expanders, the logspace algorithm is trivial.

But this is indeed a big “if”. The question is how to convert efficiently in logspace
an arbitrary graph into an expander. The answer is by using the zig-zag product.
Consider the D-regular input graph G, and assume it is connected (otherwise we
apply the same argument for each component). The connectivity of G already
implies (with an argument identical to the one above for 3-regular graphs) that it
is somewhat expanding, i.e. is an (n, D, α)-graph for some α < 1 − Ω(1/n2)).

To turn G into an expander, assume that D = d16 and that we have a
(d16, d, 1/2)-graph H. Inductively construct the graphs Gi in a similar manner
to the expander construction in subsection 9.1, but rather than starting from a
fixed size expander as the first graph, start with G itself:

G1 = G, Gi+1 = (Gi ©z H)8 for i ≥ 1.

We terminate the sequence after only k = O(log n) iterations. In each iteration,
the size of G increases by a constant factor which is the size of the graph H until

17A word to the maven: this problem is complete for the class SL, which simply means that
solving it in logarithmic space (in the class L) would imply SL = L.

18Thus proving SL ⊆ RL.
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the final iteration yields the graph Gk. The required proposition follows from the
following two claims.

Claim 9.4. The graph Gk is an (nd16k, d16, 3/4)-graph.

Claim 9.5. Neighborhood queries for Gk can be answered in logspace.

Note that the second claim is not obvious. In logspace one cannot keep copies
of the graphs Gi in memory, and therefore one has to evaluate the recursion anew
for each query. This means that large expander graphs constructed by the zig-
zag product are very explicit, even in a stricter sense than the one required
by Definition 2.3. But indeed the intuition that every one of these steps can be
performed with only additional constant space is correct. This requires a clever
construction of an appropriate data structure. We skip the proof of this claim and
refer the reader to Reingold’s paper [Rei05].

To prove the first claim, we use the third bound in Theorem 9.1. Using it we see
that (roughly speaking) the spectral gap doubles in each iteration and thus reaches
a constant in logarithmically many iterations:

1 − ϕ(α, β) ≥ (1 − β2) · (1 − α)/2.(18)

Let us denote by λi, µi the normalized second eigenvalue of Gi and Gi©z H respec-
tively. Then, using the parameters of the graph H in Equation (18) yields:

1 − µi ≥
3
8
· (1 − λi).

Therefore,

λi+1 = µ8
i ≤

[
1 − 3

8
(1 − λi)

]8
≤ max

(
λ2

i ,
1
2

)
.

Therefore, for k = O(log n), we obtain λk ≤ 1/2 as needed.
We end by noting that a recent paper of Rozenman and Vadhan [RV05] gives

a different proof of Reingold’s result using a new notion of derandomized graph
squaring. This product is closely related to zig-zag (so the proof has the same spirit),
but the analysis of the space required in their implementation is more straightfor-
ward.

10. Lossless conductors and expanders

Early in our discussion we introduced the notion of expansion ratio h(G) =
min{S | |S|≤n

2 }
|E(S,S|

|S| . Indeed, quite a few of the important properties of expander
graphs can already be derived from the fact that h(G) is bounded away from zero.
For more refined analysis it becomes necessary to consider the edge isoperimetric
parameter ΦE(G, k) = minS⊂V {|E(S, S)| : |S| = k}. We saw that a comprehen-
sive analysis of the extremal properties of this parameter would be both interesting
and very challenging, though some very good explicit constructions are known (see
subsection 5.3). The analogous questions about the vertex isoperimetric pa-
rameter: ΦV (G, k) = minS⊂V {|Γ(S) \ S| : |S| = k} seem even more challenging.
Simple considerations from subsection 5.1.1 yield that every large set of vertices
in a d-regular graph has vertex expansion at most d − 2 + o(1). As mentioned in
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subsection 4.6, results of Kahale [Kah95] show that d-regular Ramanujan graphs
are guaranteed to have vertex expansion of about d/2 and that this is essentially
tight.

To find out how good these bounds are, we already know that it is a good idea to
look at random graphs first. Indeed, as seen in subsection 4.6, for every δ > 0, a ran-
dom (n, d)-graph almost surely satisfies ΨV (G, εn) ≥ d− 2− δ for some sufficiently
small constant ε > 0. Since we know how to construct (n, d)-graphs in which small
sets have a vertex expansion of d/2, it is natural to enquire why we bother about
increasing this factor to d − 2 or so. Indeed, this question is motivated by more
than sheer curiosity. There is a variety of applications that require (n, d)-graphs
in which vertex sets of size εn have vertex expansion γd for γ > 1/2. Such appli-
cations include networks that can implement fast distributed, routing algorithms,
e.g. [PU89, ALM96, BFU99, HMP06], as well as the construction of expander-based
linear codes, e.g. [SS96, Spi96, LMSS01]. Analogous, irregular, even highly unbal-
anced graphs are used in various storage schemes [UW87, BMRV02] and in proving
lower bounds on computational complexity (the generation of hard tautologies for
various proof systems [BSW01, ABSRW04, AR01, BOGH03]).

It is still a major challenge to construct families of (n, d)-graphs in which ver-
tex sets of size εn have vertex expansion γd for γ > 1/2. However, in this sec-
tion we present a construction due to Capalbo, Reingold, Vadhan, and Wigder-
son [CRVW02] that takes a substantial step in this direction. For every δ > 0 and
sufficiently large d, this is an explicit construction of families of bipartite expander
graphs whose left degree is d and whose left expansion is (1 − δ)d for small sets of
linear size. The construction is based on a generalization of the zig-zag product to
conductors. This will offer us a glimpse into the realm of randomness-enhancing
objects, which, aside from expanders include creatures such as conductors, extrac-
tors, and dispersers (we recommend again the excellent survey [Sha04]).

10.1. Conductors and lossless expanders.

10.1.1. Conductors. The main difficulty we face here is that the spectral gap which
has served us very well so far seems, by the aforementioned result of Kahale, no
longer adequate for our purposes. We therefore revert to the language of entropy.
A natural choice would be to use the min-entropy H∞ defined in Section 3. A lower
bound on the min-entropy is a rather strong condition. The inequality H∞(p) ≥ k
means that no point has probability exceeding 2−k. (In contrast, a lower bound
on the Shannon entropy means that this holds only on average.) In this light we
consider a weaker condition and ask only how close, in total variation distance
(or equivalently in l1 norm), our distribution is to one with high min-entropy. We
introduce now some terminology.

Definition 10.1. A k-source is a distribution with min-entropy at least k. A
distribution is called a (k, ε)-source if there is a k-source at l1 distance ≤ ε from
it.

A main aspect of the present section is to emphasize an idea that has already
appeared in Sections 3 and 9: namely, that it is useful to view the entropy of a
distribution as a physical entity which we transfer around the graph as necessary.
We develop appropriate terminology to advance this idea. In particular, since
our main concern here is with bipartite graphs, we will view a bipartite graph as
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a function. Our bipartite graphs have vertex sets Left and Right, with all Left
vertices of the same degree. This function associates with a given Left vertex x and
an edge label i, the Right vertex that is the i-th neighbor of x. To facilitate our
analysis of entropy, we use bit strings to name the vertices and edge labels. As in
subsections 3.1.2 and 9.4, we are concerned with the following question. Consider a
distribution on the Left vertices of known entropy. Now take a random step along
an edge to the Right. This induces a distribution on the Right vertices, the entropy
of which we seek to bound from below. This problem is being attacked by means of
several classes of graphs which serve as building blocks for the final construction.
The common theme is this: Given a bound on the “incoming” entropy, we seek
a lower bound on the amount of entropy which is coming out (up to a small l1
distance). In keeping with the common terminology in the area of pseudorandom
number generators and extractors [RVW02, Sha04], we refer to the choice of an
edge to be taken in the next step as the randomness “injected” into the process or
as the “seed” being used. Here is our toolbox.

Denote the uniform distribution over {0, 1}d by Ud.

Definition 10.2. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (kmax, a, ε)-
conductor if for any k ≤ kmax and any k-source X over {0, 1}n, the distribution
E(X, Ud) is a (k + a, ε)-source.

The analysis of the type conducted in subsection 9.4 must always be adapted to
situations where the entropy reaches its maximum either locally or globally. Recall
(subsection 3.1.2) that a distribution on an M -element set has entropy ≤ log M .
Most of the tools we describe below are geared to handle this problem.

(1) A function E : {0, 1}n×{0, 1}d → {0, 1}m is an (a, ε)-extracting conduc-
tor if it is an (m − a, a, ε)-conductor.
In particular, if the input entropy is m − a, the output will be ε-close to
uniform. We mention that an explicit construction of an (a, ε)-extracting
conductor can be derived from known constructions (namely that of an
(m−a, ε)-extractor; see [Sha04]. This is a well-known and easy to construct
object).

(2) A function E : {0, 1}n×{0, 1}d → {0, 1}m is a (kmax, ε)-lossless conductor
if it is a (kmax, d, ε)-conductor.
We view the specification of the edge label as an “injection of randomness”
and wish none of this additional entropy to be lost. The construction of
these graphs is our ultimate goal.

(3) A pair of functions 〈E, C〉 : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}b is a
(kmax, a, ε)-buffer conductor if E is an (a, ε)-extracting conductor and
〈E, C〉 is an (kmax, ε)-lossless conductor.
This notion is intended to assure that no entropy is lost when the input
randomness is too high. Whatever entropy is lost by the first function is
to be saved completely in the second, which may be viewed as an overflow
buffer or bucket.

(4) A pair of functions 〈E, C〉 : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}b, where
n + d = m + b is an (a, ε)-permutation conductor if E is an (a, ε)-
extracting conductor and 〈E, C〉 is a permutation over {0, 1}n+d.
This is a special case of a buffer conductor, where the requirement that
〈E, C〉 is a (kmax, ε)-lossless conductor follows since 〈E, C〉 is a permutation.
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As we shall see, lossless conductance implies lossless expansion, which was our
motivating problem to begin with.

10.1.2. Lossless expanders. Let G = (VL, VR; E) be a bipartite graph such that
|VL| = N , |VR| = M , and all left vertices have degree D.

Definition 10.3. The graph G is a (Kmax, ε)-lossless expander if every set of
K ≤ Kmax left vertices has at least (1 − ε)DK neighbors.

That is, in a lossless expander sufficiently small, left vertex sets have almost the
maximal expansion possible. An alternative view is that most of the neighbors of
a small left set are unique neighbors, i.e. neighboring a single vertex of the set.
Naturally, Kmax should be somewhat smaller than M/D for this to be possible.

As mentioned above, we view a conductor E : {0, 1}n × {0, 1}d → {0, 1}m as
a bipartite graph with N = 2n left vertices, M = 2m right vertices, where each
left vertex x is connected to D = 2d right vertices E(x, ·). It is easy to check that
from this perspective, a (kmax, ε)-lossless conductor is a (Kmax, ε)-lossless expander,
where Kmax = 2kmax .

Theorem 10.4. For any ε > 0 and M ≤ N , there is an explicit family of left
D-regular bipartite graphs that are (Ω(εM/D), ε)-lossless expanders, where D ≤
(N/εM)c for some constant c.

We note that in the (useful) case where M/N and ε are bounded below by a
constant, the degree D will be constant as well. As can be expected, our approach
to this theorem is to construct an explicit family of (m − d − log(1/ε) − O(1), ε)-
lossless conductors, where d = O(n − m − log(1/ε)).

10.2. The construction. The required lossless conductors are constructed using
a zig-zag product for conductors. However, before we define this product, we need
to recall the definition of the zig-zag product given in Section 9 and adapt it slightly
to the case of bipartite graphs. Figure 12 should help the formal definition.
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Figure 12. Zig-zag product of bipartite graphs.
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Definition 10.5 (Zig-zag product for bipartite graphs). Let H be a d-regular
bipartite graph with s vertices on each side, and let G be an s-regular bipartite
graph with n vertices on each side. The zig-zag product G ©z H is a d2-regular
bipartite graph with sn vertices on each side, where the left and right sides are
arranged as n copies of H, one per each vertex of G. The edges emanating from
a left vertex (x, y) ∈ [n] × [s] are labeled by [d] × [d]. The edge labeled (a, b) is
determined as follows:

(1) Take a left to right step in the local copy of H, using a to choose an edge.
(2) Take a left to right step along an edge of G, between copies of H. More

precisely, suppose we are at (x, y′). Let x′ ∈ G be the y′-th neighbor of x.
Suppose that on x′ neighbor list, x is the z-th neighbor of x′. Then the
second step takes us from (x, y′) to (x′, z).

(3) Take a left to right step in the new local copy of H, using b to choose an
edge.

Recall that by the zig-zag theorem from Section 9, G©z H is an expander if both
G and H are such. Moreover, the degree of G ©z H is controlled by the degrees
in H, while its size and expansion are related to both G and H. Unfortunately,
while deg(G ©z H) = deg2(H), the vertex expansion of G ©z H cannot be better
than either the expansion of H or the expansion of G. In particular, it will never
exceed d =

√
deg(G©z H). This can be seen by considering the expansion of a

set consisting of a single copy of H on the left. This is a far cry from the lossless
expanders we seek. Clearly, in this example the “injected” entropy is wasted since
we have begun with a uniform distribution on a copy of H, which entropy cannot
be increased by a walk inside H. This problem will be solved by means of a buffer
in which we save the injected entropy in such cases. We now formalize this idea
and define the zig-zag product for conductors.

10.2.1. The zig-zag product for conductors. Our strategy to avoid entropy loss is
to save (or buffer) leftover entropy from the random choices made at each step.
Then, we use a lossless conductor with some truly random bits to “condense” the
leftover entropy. As suggested by the name “conductor”, we make an analogy with
the flow of electricity or water. Indeed, we think of pouring randomness (water)
into a conductor and collecting the leftovers (unused randomness beyond the kmax

bound) into a bucket for later use.
The zig-zag product for conductors must be carried out with carefully selected

parameters to yield the constant degree lossless expanders/conductors required by
Theorem 10.4. To define the product, we need three objects 〈E1, C1〉, 〈E2, C2〉,
and E3 (which respectively replace the roles of the three steps H, G, and H in the
original zig-zag product. We avoid specifying their most general parameters here
and pick a certain set of parameters which suffices for our purposes. The general
achievable sets of parameters for an explicit construction can be found in [CRVW02]
(E1 from Lemma 4.4, and E2, E3 from Lemma 4.13). So, let us assume we have in
our hands:

(1) 〈E1, C1〉 : {0, 1}n1×{0, 1}d1 → {0, 1}m1×{0, 1}b1 , a permutation conductor.
(2) 〈E2, C2〉 : {0, 1}n2 × {0, 1}d2 → {0, 1}d1 × {0, 1}b2 , a buffer conductor.
(3) E3 : {0, 1}b1+b2 × {0, 1}d3 → {0, 1}m3 , a lossless conductor.

The zig-zag product for conductors produces the conductor E : {0, 1}n×{0, 1}d→
{0, 1}m, where n = n1 +n2, d = d2 +d3, and m = m1 +m3. Let x1, x2, r2, r3, y1, y2,



EXPANDER GRAPHS AND THEIR APPLICATIONS 519

������

��������

E2 C2

E3

r3
x2x1

(n-20a) (a)

(21a)

(20a)

dn

z2

(a)

y3

(17a)(n-20a)
y1

(14a)

(14a)

n-3a

r2

y2

z1

E1 C1

Figure 13. Entropy flow in a lossless conductor.

and y3 be binary strings of respective lengths n1, n2, d2, d3, m1, d1, and m3. Then,
as depicted in Figure 13, we evaluate y1y3 = E(x1x2, r2r3) by the following three
steps:19

• (y2, z2) = 〈E2, C2〉(x2, r2)
• (y1, z1) = 〈E1, C1〉(x1, y2)
• y3 = E3(z1z2, r3)

Recall that the zig-zag product for bipartite graphs G©z H uses H twice. Here,
the first use is replaced with 〈E2, C2〉 to ensure that when x2 has high min-entropy,
y2 is close to uniform and is a good seed for 〈E1, C1〉. The second use of H is
replaced with lossless conductor E3 that transfers entropy lost in 〈E1, C1〉 and
〈E2, C2〉 to the output. The deterministic step of the zig-zag product using the
graph G is replaced with 〈E1, C1〉, which as before doesn’t use any new random
bits and whose output is just a permutation of its input (which, however, moves
entropy about to allow more to come in later).

To simplify subsequent discussion, we focus on a specific example of achievable
parameters for the three building blocks 〈E1, C1〉, 〈E2, C2〉 and E3, whose zig-zag
product, depicted in Figure 13, results in a lossless conductor.

10.2.2. Proof of the main theorem. We now need a technical lemma, showing how
to partition a joint distribution according to conditional min-entropy. Recall that
two distributions are called ε-close if their l1 distance is at most ε.

Lemma 10.6. Let (X1, X2) be a probability distribution on a finite product space.
Given ε > 0 and a, there exists a distribution (Y1, Y2) on the same space such that

• The distributions (X1, X2) and (Y1, Y2) are ε-close.

19If u and v are bit strings, then uv denotes their concatenation.
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• The distribution (Y1, Y2) is a convex combination of two other distribu-
tions (Ŷ1, Ŷ2) and (Y̌1, Y̌2), each having min-entropy at least H∞(X1, X2)−
log(1/ε).

• For all x ∈ Supp(Ŷ1) we have H∞(Ŷ2|Ŷ1 = x) ≥ a.
• For all x ∈ Supp(Y̌1) we have H∞(Y̌2|Y̌1 = x) < a.

Proof. First, split Supp(X1) according to H∞(X2|X1 = x):

Ŝ = {z : H∞(X2|X1 = z) ≥ a}, Š = {z : H∞(X2|X1 = z) < a}.
Then, define (Ŷ1, Ŷ2) and (Y̌1, Y̌2), so that Ŷ1 and Y̌1 have disjoint supports, Ŝ and
Š respectively:

Pr
[
(Ŷ1, Ŷ2) = (z1, z2)

]
= Pr

[
(X1, X2) = (z1, z2)

∣∣X1 ∈ Ŝ
]
,

Pr
[
(Y̌1, Y̌2) = (z1, z2)

]
= Pr

[
(X1, X2) = (z1, z2)

∣∣X1 ∈ Š
]
.

Let p = Pr[X1 ∈ Ŝ]. Then the probability of each value in (Ŷ1, Ŷ2) is multiplied
by 1/p, and the probability of each value in (Y̌1, Y̌2) is multiplied by 1/(1 − p).
Therefore, if ε ≤ p ≤ 1− ε then the min-entropy of (Ŷ1, Ŷ2) and (Y̌1, Y̌2) is reduced
by at most log(1/ε). In this case, we define (Y1, Y2) = (X1, X2), and we are done,
since:

(Y1, Y2) = (X1, X2) = p(Ŷ1, Ŷ2) + (1 − p)(Y̌1, Y̌2).

Otherwise, assume p < ε (the case p > 1−ε is similar). In this case since (Y̌1, Y̌2)
still has sufficiently high min-entropy, we take (Y1, Y2) = (Y̌1, Y̌2). This distribution
is ε-close to (X1, X2), since:∑

z1∈Ŝ,z2

∣∣Pr [(X1, X2) = (z1, z2)] − Pr
[
(Y̌1, Y̌2) = (z1, z2)

] ∣∣ ≤ p < ε,

∑
z1∈Š,z2

∣∣Pr [(X1, X2) = (z1, z2)] − Pr
[
(Y̌1, Y̌2) = (z1, z2)

] ∣∣
≤
(

1
1 − p

− 1
)

(1 − p) = p < ε. �

We now pick specific parameters for our building blocks, which can be explicitly
constructed, and prove that combining them using the zig-zag product for conduc-
tors yields a lossless expander as stated in Theorem 10.4.

Fix the parameters a = 1000 log(1/ε) and d = 2a. Then:
• 〈E1, C1〉 : {0, 1}n−20a ×{0, 1}14a → {0, 1}n−20a ×{0, 1}14a is an (n − 30a,

6a, ε)-permutation conductor.
• 〈E2, C2〉 : {0, 1}20a × {0, 1}a → {0, 1}14a × {0, 1}21a is a (14a, 0, ε)-buffer

conductor.
• E3 : {0, 1}35a × {0, 1}a → {0, 1}17a is a (15a, a, ε)-lossless conductor.

We state again the consequence for these choices, which suffices to prove the main
Theorem 10.4.

Claim 10.7. The resulting conductor E : {0, 1}n × {0, 1}2a → {0, 1}n−3a is an
(n − 30a, 2a, 4ε)-lossless conductor.

We first deal with the explicitness of our building blocks (more details can be
found in [CRVW02]). Note the sizes of E2 and E3 are fixed constants, and so
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there is no issue concerning their explicit construction. They can be shown to
exist by a simple probabilistic argument and can then be found by exhaustive
search. The conductor E1 needs to be arbitrarily large, but its explicit construction
follows known explicit expanders. Indeed, any graph with sufficiently small second
eigenvalue (close to Ramanujan for these parameters) is such a conductor E1, and
the proof follows, due to the equivalence of min-entropy and the Rényi entropy:
H∞(X) ≤ H2(X) ≤ 2H∞(X) as shown in Proposition 3.5.

Let us follow the entropy flow from the input (x1x2, r2r3) to the output y1y3.
We would like to prove that if H∞(X1, X2) = k, then y1y3 is a (k + 2a, 4ε)-source,
as long as k ≤ n − 30a. For ease of discussion, we first ignore the small l1-errors
in the outputs of all conductors (in other words, assume for simplicity that in our
building blocks ε = 0). These errors will simply be added at the end to give the
final error of the lossless conductor E.

We prove first that E1 and E2 together transfer enough entropy into Y1, namely:

H∞(Y1) ≥ k − 14a.(19)

By Lemma 10.6 it suffices to prove this bound only in the two extreme cases
when H∞(X2|X1 = x1) are all large or all small, as we vary all attainable values
for x1.

Case 1 : For all x1 ∈ Supp(X1), we have H∞(X2|X1 = x1) ≥ 14a.
In this case, since E2 is an (0, ε)-extracting conductor, H∞(Y2|X1 = x1) =
14a, for any x1 ∈ Supp(X1). Therefore Y2 is uniform and can be used as
a seed for 〈E1, C1〉 for any x1 ∈ Supp(X1). Since H∞(X1) ≥ k − 20a, and
since E1 is a (6a, ε)-extracting conductor, E1 conducts 6a bits of entropy
from the seed into Y1, and we obtain H∞(Y1) ≥ k − 14a.

Case 2 : For all x1 ∈ Supp(X1), we have H∞(X2|X1 = x1) ≤ 14a.
Since H∞(X1, X2) = k, it follows that H∞(X1) ≥ k−14a. Therefore, since
E2 is a lossless extractor, H∞(Y2|X1 = x1) ≥ H∞(X2|X1 = x1) for any
x1 ∈ Supp(X1). It follows that H∞(X1, Y2) ≥ H∞(X1, X2) = k. Since
〈E1, C1〉 is a permutation, also H∞(Y1, Z1) ≥ k, and again we get that
H∞(Y1) ≥ k − 14a.

Observe that both 〈E1, C1〉 and 〈E2, C2〉 conserve entropy, since 〈E1, C1〉 is a
permutation conductor and 〈E2, C2〉 is a buffer conductor. Therefore:

k + a = H∞(X1, X2, R2) = H∞(X1, Y2, Z2) = H∞(Y1, Z1, Z2).(20)

To conclude the argument, consider any y1 ∈ Supp(Y1), and note that by the
bound of k+a on the total entropy and the lower bound proved above for H∞(Y1),
we must have H∞(Z1, Z2|Y1 = y1) ≤ 15a.

Thus, E3, which is a (15a, a, ε)-conductor, conducts a bits of entropy from R3 to
Y3. That is, all the entropy of Z1, Z2 is transferred to the output Y3 without any
entropy loss, H∞(Y3|Y1 = y1) = H∞(Z1, Z2|Y1 = y1) + a. Together with (19) and
(20) this implies that

H∞(Y3|Y1 = y1) − log Pr[Y1 = y1] = H∞(Z1, Z2|Y1 = y1) − log Pr[Y1 = y1] + a

≥ H∞(Z1, Z2, Y1) + a = k + 2a.

Therefore, H∞(Y1, Y3) = k + 2a, as claimed.
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Finally to see the dependence on ε, note that these l1-errors on the extractor
outputs add up.20 The probability of falling in this error event is at most ε each
time we have such l1-error. In the above analysis of the function E, we make four
moves from a variable to its ε-close counterpart, one for each of the building blocks
〈E1, C1〉, 〈E2, C2〉, E3, and one in the use of Lemma 10.6. Thus, the actual value
of Y1Y3 is 4ε-close to the value obtained in the error-free analysis. This completes
the proof that E is an (n − 30a, 2a, 4ε)-lossless conductor.

10.2.3. Final comments. We note again that there is no known algebraic way for
constructing lossless expanders. Such strong vertex expansion does not seem to
be implied by simple algebraic parameters of the graph. Indeed, the construction
in this section provides only bipartite graphs which are losslessly expanding in
one direction. Although this is sufficient for most known applications, there are
exceptions such as [HMP06] that require a better expansion guarantee. It is a
very interesting challenge to explicitly construct simple graphs that exhibit similar
expansion to that of a random (n, d)-graph, as seen in Theorem 4.16. This is
formally stated in the following open problem. In particular, we do not know
whether the bounds in Theorem 4.16 apply to Cayley graphs as well.

Open problem 10.8. For any δ > 0 and sufficiently large d, give an explicit
construction of an arbitrarily large (n, d)-graph G satisfying ΨV (G, εn) ≥ d−2− δ,
where ε = ε(δ, d).

We note that a somewhat easier problem, unique vertex expansion (which is
implied by lossless expansion, but likewise eludes algebraic attacks), was studied
by Alon and Capalbo [AC02], who gave explicit constructions of such graphs.

11. Cayley expander graphs

Cayley graphs offer a combinatorial depiction of groups and their generators. In
this section we describe some methods to compute the second eigenvalue of Cayley
graphs, or a relative of the spectral gap, the Kazhdan constant. Our methods
include the Fourier Transform (as featured already in Section 8) and Group Rep-
resentations. Serre’s classical book [Ser77] is a good introduction to this beautiful
theory. We explain how to use these methods to establish expansion for some
examples seen in earlier sections and mention the remarkable recent progress in
understanding expansion in Cayley graphs of simple groups.

We then describe a beautiful connection between a well-known group operation,
the semidirect product, and the zig-zag product of graphs (described in Sec-
tion 9). This connection is a basis of two elementary constructions of Cayley ex-
pander graphs for nonsimple groups with bounded, or very slowly growing, degrees.
This follows the work of Alon, Lubotzky, and Wigderson [ALW01], Meshulam and
Wigderson [MW02], and Rozenman, Shalev and Wigderson [RSW04].

Definition 11.1. Let H be a group and S ⊆ H a subset thereof. The corresponding
Cayley graph C(H, S) has H as a vertex set and (g, h) is an edge if g · s = h for
some s ∈ S. On occasion we consider S as a multiset, with several copies of each

20Since if two random variables are ε-close, one can be written as a convex combination in
which the other has weight at least 1− ε, and another arbitrary distribution (capturing the error).
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element. In this case the Cayley graph has (the appropriate number of) parallel
edges between vertices.

This definition yields a directed graph. However, we will usually assume that the
set S is symmetric; i.e. s ∈ S implies s−1 ∈ S. In this case C(H, S) is undirected
and |S|-regular. We say that S generates H if every h ∈ H can be written as a
word in S; i.e. h = s1 · s2 . . . · sk with si ∈ S. Note that S generates H iff the
Cayley graph C(H, S) is connected.

Definition 11.2. We will use the shorthand notation λ(H, S) for λ(C(H, S)), the
second eigenvalue (in absolute value) of the normalized adjacency matrix of this
Cayley graph. The same for all eigenvalues, in particular the second (without
absolute value), λ2(H, S). We also define its spectral gap g(H, S) = 1 − λ2(H, S).

Here are some very simple examples of Cayley graphs:
• The additive cyclic group Zn = Z/nZ of integers modulo n is generated by

S = {+1,−1}. The graph C(Zn, S) is the cycle on n vertices.
• The additive group Z

d
2 of the d-dimensional vector space over the field Z2

with its standard set of generators S = {e1 = (1, 0, . . . , 0), e2, . . . , ed}. Here
C(Zd

2, S) is the graph of the d-cube (see subsection 4.2.1).
• For any group H, when S = H the Cayley graph C(H, S) is the complete

graph on vertex set H (plus a loop at each vertex).
Cayley graphs form a rather special class of graphs. For example, as we now

show they are all vertex-transitive.

Definition 11.3. An automorphism of a graph is a permutation π of the vertices
such that (v, w) is an edge if and only if (π(v), π(w)) is an edge. A graph is
called vertex transitive if for any ordered pair of vertices v, w there is some
automorphism of the graph that sends v to w.

Claim 11.4. Every Cayley graph is vertex transitive.

Proof. Let G = C(H, S) be a Cayley graph, and let g, h be two vertices. The
mapping x → hg−1x is an automorphism of G that sends g to h. �

Constructions of Cayley graph expanders - an overview. The special struc-
ture of Cayley graphs makes it easier to bound their second eigenvalues in many
cases, or at least derive such bounds from known theorems in other areas.

The first construction of an explicit expander graph family was given by Mar-
gulis [Mar73] in 1973. We described his construction in Section 8 and noted that
while it is given in terms of affine action of SL2(p), it is actually derived from
Cayley graphs on the groups SL3(p) of 3×3 - matrices with determinant 1 over the
field with p elements (where p varies over all primes). In these Cayley graphs the
generating sets are all the elementary matrices, namely those with 1’s on the
main diagonal and an extra ±1 at one other entry. This yields 12-regular Cayley
graphs. They are shown to be expanders with second eigenvalue at most 1 − ε for
some fixed ε > 0, independent of p. The proof relies on a theorem of Kazhdan that
the “mother group” of these finite groups, namely SL3(Z), has the Kazhdan prop-
erty (T). From this the spectral gap follows simultaneously for all these quotient
groups. Margulis’ reduction from the Cayley graphs on SL3 to the affine action of
SL2 follows Kazhdan’s proof of property (T ) for these groups.
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Lubotzky [Lub94] proved a similar result directly for Cayley graphs on SL2(p).
While the “mother group” here, SL2(Z), fails to have Kazhdan property (T),
Lubotzky observes that Selberg’s celebrated 3/16 theorem suffices to establish the
spectral gap on all these quotients in an identical way. He calls this weaker prop-
erty (τ ), and his book [Lub94] (as well as his forthcoming book with Zuk [LZ])
elaborates on the usefulness of this property in a variety of contexts.

The related family of groups PSL2(p) features in the celebrated Ramanujan
graphs [LPS88, Mar88], as described in subsection 5.3. Here different generators are
used. The optimal eigenvalue bounds are based on deep results of Deligne solving
the Ramanujan conjecture for varieties over finite fields, as well as subsequent
estimates.

Quite surprisingly, about 20 years elapsed until the next slew of constructions for
Cayley expanders appeared. These have a very diverse nature and use a variety of
new techniques. The zig-zag product and its connection to the semidirect product
were used [MW02, RSW04] to construct expander Cayley graphs. These construc-
tions work iteratively and apply for some nonsimple groups. This is described at
the end of this section.

We say that an infinite family of groups {Hi} can be made into a family of
expanders if there is a constant d and a generating set Si of size d in each Hi so
that the family C(Hi, Si) is a family of expanders as in Definition 2.2.

We recall that a finite group is simple if it has no nontrivial normal subgroups.
Such groups can be viewed as the building blocks from which all finite groups can
be constructed. The complete classification of finite simple groups is one of the
major achievements of modern mathematics. An understanding of expansion in
almost all finite simple groups has recently evolved. Kassabov [Kas05a], following
previous work of Shalom [Sha99] and others, showed that the family of simple
groups SLn(pm) for all n ≥ 3, m ≥ 1 and p prime can be made into a family of
expanders. Lubotzky [Lub] derived similar results for the family SL2(pm).

In another breakthrough [Kas05b], Kassabov showed that the family of alternat-
ing and symmetric groups An and Sn can also be made into a family of bounded-
degree expanders. His construction combines ingenious combinatorial arguments
with estimates on characters of the symmetric group due to Roichman [Roi96].

Using results by Nikolov [Nik05], Lubotzky [Lub] showed that a family consisting
of most simple groups can be made into a family of expanders. (We only know
this for “most” simple groups, since the claim is not known to hold for the so-
called simple groups of Suzuki type). All these exciting developments are explained
in [KLN05].

It is natural to seek other families of groups which can be made into a family of
expanders. The next proposition shows that this is not always possible.

Proposition 11.5. Let H be an Abelian group, and let S be a generating set such
that λ(H, S) ≤ 1/2. Then |S| ≥ log |H|/3.

A deeper result of Lubotzky and Weiss [LW93] shows that solvable groups of
bounded derived length cannot be made expanders with generating sets of bounded
size.

Proof. As mentioned in subsection 2.4, an (n, d, α)-graph has a logarithmic diame-
ter. Specifically, if the cardinality of H is n, the Cayley graph C(H, S) has diameter
smaller than 3 log n. In particular, every element of H can be written as a product of
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at most 3 log n elements of S. In an Abelian group, the number of different products
of length l of elements of S is equal to the number of partitions of l to |S| parts.
Define m = |S|. The number of such partitions is then

(
l+m−1

l

)
. Consequently,∑

j≤l

(
j+m−1

j

)
≥ n. Substitute l = 3 log n to conclude that |S| = m ≥ 1

10 log n.
This calculation uses a standard estimate

(
k
l

)
≤ (ke/l)l. �

The following theorem of Alon and Roichman [AR94] proves that Abelian groups
are extreme in the sense considered in Proposition 11.5. Indeed any group, Abelian
or not, has a choice of logarithmically many generators which yield an expanding
Cayley graph. In fact, a random subset of this size suffices.

Theorem 11.6 (Alon-Roichman [AR94]). Let H be a group and let S be a subset
chosen randomly uniformly in H with size 100 log |H|. Then λ(C(H, S)) < 1/2 with
probability at least 0.5.

11.1. Representations of finite groups. Here we give a short introduction to
necessary parts of representation theory and explain its usefulness for understanding
the eigenvalues of Cayley graphs (and Schreier graphs, which we define below). For
an excellent text on this theory we refer the reader to [Ser77].

The simplest representations of a group are characters, whose definition and
basic properties were given in subsection 8.1.1. The important connection of char-
acters to eigenvectors and eigenvalues of Cayley graphs is given below.

Proposition 11.7. Let M be the normalized adjacency matrix of a Cayley graph
C(H, S). Let χ be a character of H. Then the vector (χ(h))h∈H is an eigenvec-
tor of M , with eigenvalue 1/|S| ·

∑
s∈S χ(s). In particular, the trivial character

corresponds to the trivial eigenvalue 1.

Proof. The proof follows from the following simple calculation:

(M · χ)(x) =
1
|S| ·

∑
s∈S

χ(xs) =
1
|S|
∑
s∈S

(χ(x) · χ(s)) =
1
|S|

(∑
s∈S

χ(s)

)
· χ(x). �

Together with proposition 8.5 we obtain a simple method to determine the eigen-
values of C(H, S) when H is Abelian. We simply compute 1/|S|

∑
s∈S χ(s) for all

the characters χ of H. Here are two examples, which have already appeared in
subsection 4.5.

Eigenvalues of the discrete cube. We mentioned in subsection 8.1.1 the charac-
ters of Zd

2. For the character χa it holds that χa(ei) = −1 if ai = 1 and χa(ei) = 1
otherwise. The corresponding eigenvalue is (1/d) ·

∑
i(χa(ei)) = 1−2w(a)/d, where

w(a) is the (Hamming) weight of a, namely the number of 1’s in it. The eigenvalue
set is therefore {1 − 2k

d | k = 0, . . . , d}, where the eigenvalue 1 − 2k
d appears with

multiplicity
(

d
k

)
. The largest nontrivial eigenvalue is thus 1−2/d, which corresponds

to every character χa where a = ej for some d ≥ j ≥ 1.

Eigenvalues of the cycle. From the remarks in subsection 8.1.1 it follows that
the eigenvalues corresponding to the character χk is (e2πk + e−2πk)/2 = cos(2πk).
Thus the eigenvalues of the n-cycle are the numbers cos(2πk) for k = 0, . . . , n − 1.
The largest nontrivial eigenvalue is cos(2π/n) = 1 − Θ(1/n2).
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11.1.1. Representations and irreducible representations. The method just discussed
that works so well for Abelian groups does not, in general, apply to non-Abelian
groups, for those may fail to have any nontrivial characters. To deal with this more
complicated case we need to introduce a generalization of characters that exists for
every group, namely, group representations. Rather than characters which are
homomorphisms into the complex plane, we consider homomorphisms into matrix
groups. We describe only the basic tools we need of this beautiful theory, and refer
the reader to [Ser77] for more.

Recall that a linear operator A acting on a complex Hermitian inner-product
space21 V is called unitary if < Av, Aw >=< v, w > for every v, w ∈ V (namely A
is a rotation). The set U(V ) of all unitary operators forms a group under operator
composition.

Definition 11.8. A unitary representation of a group H is a pair (V, ρ) where
V is a complex linear space with a Hermitian inner product and ρ is a group
homomorphism ρ : H → U(V ). We often omit V when it is obvious or unimportant
and denote the representation by ρ alone. The dimension of ρ is dim(V ).

Thus, representations are the natural extension of characters, which are simply
1-dimensional representations. To be more concrete, a d-dimensional representation
of a group H is an assignment of a d×d unitary matrix Bh to every h ∈ H, so that
BgBh = Bgh for every pair of elements g, h ∈ H.

We note that representation theory deals as well with nonunitary representations,
but for finite groups, which are our main concern here, there is no loss of generality
in restricting ourselves to unitary representations, as we do.

Now we define the main representation of a group: regular representation.
We will later see that it “captures” all representations of the group in a well defined
way.

Definition 11.9. Let H be a finite group and let V be the |H|-dimensional vector
space of all complex functions f : H → C, with the standard Hermitian inner
product. The regular representation r = rH of H is defined by [r(h)f ](x) =
f(xh) for every h ∈ H.

We now introduce “irreducible” representations which can be considered as build-
ing blocks from which all representations can be constructed. To this end we first
introduce the notion of invariant subspaces of a given representation, which are
preserved under the action of all matrices in it. Our first step in this direction is
to define invariant vectors. These will feature later on as well in our analysis of
expansion in Cayley and Schreier graphs.

Definition 11.10. An invariant vector of a representation (V, ρ) is a nonzero
vector v ∈ V such that ρ(h)v = v for all h ∈ H. For example, in the regular
representation the invariant vectors are the constant functions on the group H.

An invariant subspace is a linear subspace W ⊂ V such that ρ(h)W = W for
all h ∈ H. (This means that ρ(h)(w) ∈ W for every w ∈ W , but not necessarily
that ρ(h)(w) = w.)

For example, in the regular representation, constant functions on H are invariant,
and there are no other invariant vectors. The orthogonal complement of the space of

21For our purposes V can simply be taken to be Cd with the usual Hermitian inner product

of complex vectors, < x, y >=
∑d

i=1 xiyi.
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constant functions, the functions whose coordinate sum is zero, forms an invariant
subspace.

Definition 11.11. A representation is called irreducible if it has no nontrivial
invariant subspaces.

Representations which are identical up to a change of basis in the linear space
are considered identical for the purpose of representation theory.

Definition 11.12. Two representations (V, ρ), (W, η) are called isomorphic if
there is an isomorphism of vector spaces f : V → W such that f(ρ(g)v) = η(f(v)).
Equivalently, there is a common change of basis which moves the matrices in ρ to
the corresponding matrices in η.

Therefore, if (V, ρ) is not irreducible and has a nontrivial invariant subspace
V ′, we can carry out a change of basis to make the action of ρ on V ′ and on its
orthogonal complement V ′′ take place in disjoint sets of coordinates. This yields a
representation isomorphic to (V, ρ) which now decomposes into two representations
of smaller dimension, (V ′, ρ′) and (V ′′, ρ′′). This process can be iterated on the
resulting representations until no more invariant subspaces are found. Thus every
representation can be decomposed to irreducible components. We will soon see that
the outcome of this process is unique.

The following lemma states that every representation decomposes (uniquely) into
irreducible ones.

Proposition 11.13. Let (V, ρ) be a unitary representation of a group H. Then
there is an orthogonal decomposition of V into a direct sum of invariant subspaces
V = ⊕Vi with ρ(h)Vi = Vi for all i and h ∈ H, and (Vi, ρ) are irreducible represen-
tations. Moreover, this decomposition is unique up to isomorphism.

We next see that the regular representation contains all possible irreducible
representations in its decomposition.

Proposition 11.14. Let (V, r) be the regular representation of a group H, and let
(U, ρ) be any irreducible representation of H. Then (U, ρ) appears in the decompo-
sition of (V, r) into irreducible representations.

We finally get to use this apparatus to analyze Cayley graphs. We proceed in a
way analogous to the method used in Proposition 11.7. Fix a generating set S for
H and a representation (V, ρ) of H, and consider the matrix

Aρ = (1/|S|) ·
∑
s∈S

ρ(s).

The following lemma is simple but useful. It shows how the matrices above,
when we range over all irreducible representations, capture all eigenvalues of the
Cayley graph with generators S.

Lemma 11.15. Let H be a finite group and let S be a symmetric subset of H.
Then:

• The normalized adjacency matrix of C(H, S) is Ar for r the regular repre-
sentation of H.

• Every eigenvalue of Ar is an eigenvalue of Aρ for some irreducible repre-
sentation ρ.
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• The converse also holds: If ρ is a representation of H, then every eigenvalue
of Aρ is also an eigenvalue of Ar.

In principle, at least, this is a recipe by which we can calculate all the eigenvalues
of C(H, S). In practice, however, it is usually quite hard to analyze all the matrices
Aρ. It is more manageable, though, for generating sets S of special structure.
Also, as mentioned above, it is often the case that results from various areas of
mathematics can be used to this end.

11.1.2. Schreier graphs. Much of what we have just done applies in a context more
general than that of Cayley graphs of groups, namely for graphs corresponding to
the action of a group on a set. Let H be a group and X be some set. An action of
H on X is a group homomorphism π : H → Sym(X) that sends each element h to
a permutation of the elements of X. For any subset S of H we define the Schreier
graph Sch(H, X, S) whose vertex set is X and whose edges are (x, π(s)x) for every
s ∈ S and every x ∈ X. Here are a few examples.

• Schreier graphs are indeed more general than Cayley graphs, since any
group H acts on itself by sending an element h to the permutation g → gh.
In this case Sch(H, X, S) is simply the Cayley graph C(H, S).

• The symmetric group Sn acts on the set [n] by π(σ)(i) = σ(i).
• The group GLn(p) of invertible matrices over the field Fp acts on the set

Fn
p of n-dimensional vectors by π(M)v = M · v.

While these examples still look special and “algebraic”, the following basic fact
shows that essentially every regular graph is a Schreier graph of some group.

Theorem 11.16 (Gross [Gro77]). Every finite regular graph of even degree is a
Schreier graph corresponding to some finite group acting on some finite set.

The idea of the proof is simple: if the degree is 2d, then the edges can be
partitioned to d cycle covers. To each we assign a permutation (and its inverse) on
the vertex set. The group generated by all these permutations naturally acts on
the graph and provides a natural labeling of the edges by generators.

We now explain how the eigenvalues of the adjacency matrix of a Schreier graph
are obtained from those of the naturally associated Cayley graph of the acting
group.

An action π of H on a set X naturally defines a permutation representation
(V, ρ) of H. Here V is the vector space of all complex-valued functions on X,
and (ρ(h)f)(x) = f(π(h)x). The normalized adjacency matrix of Sch(H, X, S) is
equal to Aρ = 1/|S| ·

∑
s∈S ρ(s). By Proposition 11.15 every eigenvalue of Aρ is

an eigenvalue of Ar, where r is the regular representation. Consequently, every
eigenvalue of the Schreier graph is an eigenvalue of C(H, S). In particular

Proposition 11.17. Let H be a finite group acting on the set X. Let S be a subset
of H and let Z be a connected component of Sch(H, S, X). Then λ(Z) ≤ λ(H, S).

The proposition implies that if a Cayley graph of H is an expander, then so are
all the corresponding connected Schreier graphs. We apply this to show that two
families of graphs we previously met in subsection 2.2 are expanding.
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• Let SL2(m) be the group of 2×2 matrices with determinant 1 over the ring
of integers modulo m. It can be proved (see [Lub94]) that the set

S =
(

1 ±1
0 1

)
,

(
1 0
±1 1

)
generates a Cayley graph with second eigenvalue at most 1 − 1/2000. The
group SL2(m) acts on the set (Zm)2 (multiply the matrix by the vector).
Consider the corresponding Schreier graph Sch(SL2(m), (Zm)2, S). Here
a vertex (x, y) is adjacent to (x, y ± x) and (x ± y, y). This is a 4-regular
subgraph of the 8-regular graph defined in subsection 2.2 and a close relative
of the graphs discussed in Section 8. By Proposition 11.17, every connected
component of this Schreier graph has second eigenvalue at most 1−1/2000,
and it is not hard to see that the connected components are the vector
(0, 0) ∈ (Zm)2 and its complement.

• Let p be a prime. The projective line P1(Zp) is the punctured plane
(Zp)2 \ {(0, 0)} modulo the equivalence relation (x, y) ≡ (ax, ay) for all 0 �=
a ∈ Zp. The set P1(Zp) consists of p + 1 points, which are the equivalence
classes of (x, 1) for all x ∈ Zp, plus the equivalence class of (1, 0).

The group SL2(p) acts on P1(Zp), since it acts on (Zp)2 \ {(0, 0)} and
respects the equivalence relation. Identify the equivalence class (x, 1) of
the projective line with the element x ∈ Zp and define the equivalence
class (1, 0) to be “the point at infinity”. Then the action of SL2(p) on
the projective line can be defined as follows (we extend the arithmetic
operations to include infinity in the obvious way):(

a b
c d

)
x =

ax + b

cx + d
.

We say that SL2(p) acts on the projective line by fractional linear trans-
formations (also known as Möbius transformations). Now consider the
following generating set S of SL2(p):

S =
(

1 ±1
0 1

)
,

(
0 1
−1 0

)
.

In the corresponding Cayley graph on the projective line P1(Zp), the neigh-
bors of x are the points (−1/x) and (x ± 1). It can be shown that
λ(SL2(p), S) < 1 − 1/104, so the same holds for the connected graph
Sch(SL2(p),P1(Zp), S). If one removes the point at infinity and adds a
self-loop to the point 0 (to compensate for the missing edge), one obtains
the 3-regular expander graph described in subsection 2.2.

11.1.3. Kazhdan constant and expansion of Cayley graphs. Let (V, ρ) be an irre-
ducible unitary representation of the finite group H. Consider some v ∈ V of unit
norm and let us investigate the distance from v to its images {ρ(h)v|h ∈ H}. Since
ρ(h) is always a unitary matrix, all the vectors ρ(h)v have unit norm, and in par-
ticular ‖ρ(h)v − v‖ ≤ 2. On the other hand, it is easy to verify that the vector∑

h∈H ρ(h)v is invariant, so by irreducibility it must be zero. But the term corre-
sponding to h = id, the identity in H, gives ρ(h)v = v, so there must be some s ∈ H

for which ρ(s)v has negative inner product with v, and thus ‖ρ(s)v−v‖ >
√

2. The
Kazhdan constant of a subset S ⊆ H quantifies the extent to which a similar
conclusion still holds when s must be selected only from S.
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This discussion illustrates the significance of smallest displacement of any vector
by any nontrivial representation acting on it. In this section we point out that the
spectral gap of a Cayley graph as well as the Kazhdan constant are closely related to
this minimum displacement and are therefore closely related to each other. Kazhdan
[Kaz67] originally introduced this constant as well as the closely related Kazhdan’s
property (T) for infinite groups. These concepts have played a key role in the
solution of several important open problems. It turns out that these concepts
are very useful for finite groups as well. Although the Kazhdan constant and the
spectral gap in Cayley graphs are closely related, there are different situations where
one or the other is easier to work with. This dual perspective was a key feature in
Kassabov’s recent breakthrough result [Kas05b] that the symmetric groups can be
made into a family of expanding graphs.

We have already often used the variational definition of eigenvalues to estimate
the spectral gap of graphs. In the case of a Cayley graph C(H, S), recalling that
Ar is its normalized adjacency matrix, this can be stated as follows:

λ2(H, S) = max
v⊥1

vT Arv

‖v‖2
= max

v⊥1

1
|S|
∑
h∈S

vT r(h)v
‖v‖2

where r is the regular representation. We use the expression for the normalized
adjacency matrix of C(H, S) from Lemma 11.15. Since r is unitary, it is easily
verified that

‖r(h)v − v‖2

‖v‖2
= 2(1 − vT r(h)v

‖v‖2
).

Consequently,

g(H, S) = 1 − λ2(H, S) = min
v⊥1

1
2|S|

∑
h∈S

‖r(h)v − v‖2

‖v‖2
.

If the degree is a constant and we do not seek the optimal expansion, the largest
term in this sum gives a constant approximation. This leads us to the following
definition.

Definition 11.18. Let S be a subset of a group H. The Kazhdan constant of
S is defined by

K(H, S) = min
v⊥1

max
h∈S

‖r(h)v − v‖2

‖v‖2
.

We already know by Lemma 11.13 that the regular representation decomposes
into an orthogonal sum of irreducible representations and that all the irreducible
representations of H appear in this decomposition. The vector with minimal dis-
placement will therefore appear in some irreducible representation, so the Kazhdan
constant may also be defined as

K(H, S) = min
ρ

min
v⊥1

max
h∈S

‖ρ(h)v − v‖2

‖v‖2

where (ρ, V ) ranges over all nontrivial irreducible representations of H.
The spectral gap of C(H, S) and the Kazhdan constant are therefore related as

follows:
K(H, S)/(2|S|) < g(H, S) < K(H, S)/2.

Thus, as mentioned, when we consider generator sets of bounded cardinality and if
we do not strive for optimal parameters, the spectral gap and the Kazhdan constant
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can be used interchangeably. The Kazhdan constant is sometimes more convenient
to handle than the spectral gap. For example, enlarging the generating set S may
decrease g(H, S), while K(H, S) can only increase. Here is a useful observation in
the same spirit.

Claim 11.19. Let H be a group, and let S, S̃ be subsets of H such that each element
of S̃ can be written as a product of at most m elements of S. Then K(H, S) ≥
K(H, S̃)/m.

Note that this property is not shared by the spectral gap. If the set S̃ is obtained
from S by adding many copies of the identity element, then the assumption of the
claim holds with m = 1, but g(H, S) may be much smaller than g(H, S̃).

11.2. The replacement product and semidirect product. In Section 9 we
defined the zig-zag product of graphs and used it to construct expander families.
In this section we construct families of expander Cayley graphs using the zig-
zag product. In general, a zig-zag product of two Cayley graphs is not a Cayley
graph. Nevertheless, under certain conditions on the underlying groups and on the
generating sets, the zig-zag product of two Cayley graphs C(A, SA) ©z C(B, SB)
is indeed a Cayley graph C(C, SC) where C is the semidirect product of A and
B. This connection and its utility in establishing expansion were first described in
[ALW01]. We first present the connection in this section and then the applications
of this and other papers in the subsequent sections.

We start by defining semidirect product and then describe its relation to the zig-
zag product. The notion of a group acting on a set was already mentioned above.
When the set has a group structure, this is specialized as follows:

Definition 11.20. An action of a group B on a group A is a group homomor-
phism φ : B → Aut(A). In other words, each element b ∈ B corresponds to an
automorphism φb of A, where φb1·b2 = φb1φb2 .

For example, the cyclic group Zd acts on the group Zd
2, the additive group of

the d-dimensional vector space over Z2, by cyclically shifting the coordinates of the
d-dimensional vectors.

When a group B acts on A we can define a group structure on the set A × B.

Definition 11.21. Suppose a group B acts on a group A. The semidirect prod-
uct A � B is a group whose elements are pairs (a, b) where a ∈ A and b ∈ B. We
define

(a1, b1) · (a2, b2) = (a1 · φb1(a2), b1 · b2).

The simplest example of the semidirect product is the special case of the direct
product A×B. In this case φb is the identity automorphism of A for all b ∈ B, and
so (a1, b1) · (a2, b2) = (a1 · a2, b1 · b2). Let us move to a more interesting example.
As we saw the group Zd acts on Zd

2. The element set of the resulting semidirect
product is (v̄, x) ∈ Z

d
2 × Zd. The multiplication rule is

((vi)d−1
i=0 , x) · ((wi)d−1

i=0 , y) = ((vi + wi+x)d−1
i=0 , x + y).

Notice that this group is not commutative although the constituent groups are.
We now return to Cayley graphs. Continuing with this example, pick {+1,−1}

as a generating set of Zd, and e0, . . . , ed−1 for Zd
2. The corresponding Cayley graphs

are the d-cycle and the d-dimensional binary cube respectively. Since the degree of
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the d-dimensional cube is equal to the number of vertices in the d-cycle, we can form
a zig-zag product of the two. Let us consider the simpler replacement product,
defined in subsection 9.3. In this product we replace every vertex of Z

d
2 by a cloud

of d vertices representing the set Zd. On each cloud we preserve the edges of the
original d-cycle. We also connect each vertex in the cloud to one of the d neighbors
of the cloud in the binary cube. In our discussion in Section 9 it did not matter
much how the clouds are connected to each other. Now we choose to connect the
vertex (v, h) to (v + eh, h); the usefulness of this specific choice will become clear
later. Like the zig-zag construction, the replacement product is an expander if the
original two graphs are expanders. The resulting graph for d = 3 is depicted in
Figure 14.

Figure 14. A Cayley graph of (Z2)3 � Z3.

We have described two operations above: The semidirect product takes groups
A, B and puts a group structure on the set A × B. The replacement product (or
zig-zag product) takes graphs on vertex sets A, B and constructs a graph on vertex
set A × B. The two constructions are closely related. Under certain assumptions,
the replacement product of the Cayley graphs of the groups A, B is also a Cayley
graph of the semidirect product of A � B. In our running example, consider the
replacement product of the d-cycle and the d-dimensional binary cube we defined
above. It is a Cayley graph of the semidirect product Zd

2 � Zd, with the three
generators {(0̄,±1) ∪ (e0, 0)}.

We now turn to the general statement relating replacement products and semidi-
rect products. Suppose a group B acts on a group A. The orbit of an element
a ∈ A under the action of B is the set {φb(a)|b ∈ B}. For example, the orbit of
v ∈ Z

d
2 under the action of Zd is the set of all cyclic shifts of v. Suppose that

some (possibly very large) generating set SA of A is such an orbit of some element
x ∈ A. We prove in the following lemma that we can find a generating set for A�B
consisting of some generating set SB for B (embedded in A � B), plus the single
element x, instead of the whole set SA. Furthermore, the resulting Cayley graph
is the replacement product of C(A, SA) and C(B, SB). The replacement product is
an expander if the constituent graphs are expanders, and as long as SA is a single
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B orbit, the degree of the replacement product is dominated by the size of SB, even
though SA may be as large as B. We state the conclusion formally in the following
theorem.

Theorem 11.22 (Alon-Lubotzky-Wigderson [ALW01]). Let A, B be two groups
with generating sets SA, SB such that |B| = |SA|. Furthermore, suppose that B
acts on A in such a way that SA is the orbit of one of its elements x ∈ SA under
this action. Then S := {(1, s)|s ∈ SB}∪{(x, 1)} generates A�B, and C(A�B, S)
is a replacement product of C(A, SA) and C(B, SB). More generally, if SA is a
union (taken with multiplicities) S1

A ∪ . . . ∪ Sk
A of k orbits under the action of B,

and if x1, . . . , xk are representatives of these orbits, then S := {(1, s)|s ∈ SB} ∪
{(x1, 1), . . . , (xk, 1)} is a generating set for A � B, and C(A � B, S) is the union of
the k replacement products of C(A, Si

A) and C(B, SB) when 1 ≤ i ≤ k.

Proof. We will prove the single-orbit case and leave the general case to the reader.
Suppose then that SA is a single orbit under the action of B, with representative
x. To see that S generates A � B, first note that each element (a, b) ∈ A � B can
be written as the product (a, 1) · (1, b) and can therefore be written as a product
of elements from (1, SB) ∪ (SA, 1). By assumption, any sa ∈ SA is equal to φsb

(x)
for some sb ∈ SB, and therefore (1, sb) · (x, 1) · (1, s−1

b ) = (φb(x), 1) = (sa, 1). This
implies that indeed S generates the group A � B.

Now consider the graph C(A�B, S). This graph consists of clouds of the elements
of B, where each cloud is interconnected by the edges of C(B, SB), since (a, b) ·
(1, sb) = (a, b · sb). Between the clouds we have edges of the form (a, b) · (x, 1) =
(a · φb(x), b). So the cloud of the element a is connected by one edge to each of the
clouds corresponding to the neighbors of a in the graph C(A, SA), as required by
the replacement product definition. �
Remark 11.23. Under the assumptions of the lemma, we can describe also the zig-
zag product (instead of the replacement product) of the same two Cayley graphs as
a Cayley graph on A�B with the generating set {(1, s1)·(x, 1)·(1, s2) : s1, s2 ∈ SB}.
11.3. Constructing expander families by iterated semidirect products.
As we saw, it is possible to construct a family of constant degree expanders using
the zig-zag product. We have just seen that the zig-zag product of two Cayley
graphs is sometimes a Cayley graph. Can these two ideas be combined to con-
struct a family of Cayley expander graphs? This is indeed possible, and we will
present two constructions. One, by Meshulam and Wigderson [MW02], constructs
a family of expanders with nonconstant but very slowly growing degree. The other
construction, by Rozenman, Shalev, and Wigderson [RSW04], yields a family of
constant-degree expanders.

11.3.1. Cayley expanders from group rings. [MW02] For a finite group H let Fp[H]
be the group ring over the finite field Fp, namely the set of all formal sums
{
∑

h∈H αhh : αh ∈ Fp}, with the obvious addition and multiplication. We think
of Fp[H] as an additive group, so the group H naturally acts on Fp[H]. Therefore,
we can iteratively construct a sequence of groups by Hi+1 = Fpi

[Hi]�Hi. We later
argue that one can find a constant number of orbits under the action of Hi that
make Fpi

[Hi] an expander. Using Theorem 11.22 we obtain a family of expanders.

Theorem 11.24 (Meshulam-Wigderson [MW02]). There exists a group H1, a
sequence of primes pi, and a sequence of generating sets Ui for Hi such that
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λ(Hn, Un) ≤ 1/2 and |Un| ≤ log(n/2) |Hn|, where logr is the r times iterated loga-
rithm function.

This construction is nearly optimal, since the groups Hn are solvable with huge
Abelian subgroups. More precisely, Hn is a solvable group with solvability index at
most n (as Hn−1 is a normal subgroup with Abelian quotient Fpn−1 [Hn−1]). In this
case it is known that any generating set achieving λ ≤ 1/2 must have cardinality
at least log(n) |Hn| [LW93].

To achieve the above construction, Meshulam and Wigderson prove a sufficient
condition to make Fp[H] an expander with a generating set consisting of a constant
number of H orbits. Interestingly, this condition relies on the distribution of di-
mensions of the irreducible representations of H (we note that similar but simpler
statements appear already in section 3 of [ALW01]).

Theorem 11.25. Let dr be the number of irreducible representations of H of di-
mension smaller than r. If dr < cr for some constant c and for all r, then there is
a constant number of orbits of Fp[H] that make it an expander.

One family of groups that have this property are the monomial groups.22 Such
groups have the nice property that if Hi is monomial, then Hi+1 is monomial as
well, and one can explicitly find generating orbits for Fp[Hi]. This gives a sequence
of explicit expanding Cayley graphs Xi on the groups Hi, where the degree of Xn

is exponential in n and the size of Xn+1 is a tower function in n. The degree of
Xn is therefore indeed an iterated logarithm in the size of Xn, yielding a family of
expanders with degrees that grow extremely slowly.

11.3.2. Cayley expanders from iterated wreath products. For every group H, the
symmetric group Sd acts naturally on the group Hd, the direct product of d copies
of H, by permuting the coordinates. The resulting semidirect product Hd

� Sd is
called the wreath product of H and Sd. The wreath product may also be defined
for any subgroup of Sd, for example the alternating group Ad. Take H1 = Ad, and
define Hi+1 = Hd

i � Ad. Rozenman, Shalev and Wigderson [RSW04] prove that
this family of groups can be made into an expander family. The main lemma in
the proof is a construction of a single Ad orbit that generates Hd as an expander
(under a certain condition on H).

Here is the idea of this main lemma. Let U be some expanding generating set
for H. It is not hard to check that Ud, the set of all U -valued vectors of length d, is
an expanding generating set for Hd (with the same second eigenvalue). However,
the set Ud is far from being a single Ad orbit. Consider the subset U (d) ⊂ Ud,
consisting of U -valued vectors of length d in which every element of U appears
the same number of times (assume that |U | divides d). This subset is indeed a
single Sd orbit, but is it still expanding? The next theorem answers this question
positively, if |U | is small relative to d and if every element of H can be written as
a commutator. We note that this property carries itself inductively if H1 = Ad has
it, which indeed it does.

Theorem 11.26 (Rozenman-Shalev-Wigderson [RSW04]). Let H be a group in
which every element h can be written as a commutator h = aba−1b−1. Let U be an

22I.e., all their irreducible representations are induced from one-dimensional representations of
subgroups of H.
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expanding generating set for H with second eigenvalue at most 1/4, and suppose
|U | < d/106. Then λ(Hd, U (d)) < 1/2.

Theorem 11.26 carries out part of the induction step in the construction of the
expander family. We want to show that when Hi has a small enough expanding
generating set, the same holds for Hi+1 = Hd

i � Ad. We found a generating set for
Hd which is a single Ad orbit. We now need to find an expanding generating set
for Ad. Since the size of the generating set of Hi+1 is dominated by the size of the
generating set of Ad, we need Ad to have a small expanding generating set. This is
also required for the first group H1 of the construction (which is also Ad). We can
now use:

Theorem 11.27 (Kassabov [Kas05b]). The alternating group Ad has an explicit
generating set U of size independent of d such that λ(Ad, U) < 1/100.

These two theorems imply that the construction above works for large enough
d.

Corollary 11.28 ([RSW04]). Consider the sequence of groups defined by H1 = Ad

and Hi+1 = Hi �Ad. If d is large enough, then there exists a sequence of generating
sets Ui such that λ(Hi, Ui) ≤ 1/2 and |Ui| is independent of i.

11.4. Expansion is not a group property. Consider the following question
raised by Lubotzky and Weiss [LW93]:

Question 11.29. Let Hi be a family of groups with generating sets Ui, of bounded
size independent of i, so that C(Hi, Ui) is a family of expanders. Is it true that for
every other bounded size generating sets Vi, the Cayley graphs C(Hi, Vi) form an
expanding family as well?

In simple words this asks whether expansion is a property of the groups Hi that
is independent of the choice of a specific generating set. The answer is negative,
as was first demonstrated via the connection of semidirect product to the zig-zag
product of [ALW01] discussed above. We explain this example and then the far
simpler example which follows from Kassabov’s recent work [Kas05b].

First counterexample. Consider the vector space Ap = F p+1
2 for some prime p.

This is an Abelian group and of course has no bounded-size expanding generating
set. We saw in subsection 11.1.2 that SL2(p) acts on the projective line P1(Zp)(Fp)
which has p+1 points. Therefore, SL2(p) acts on F p+1

2 by permuting the coordinates
of the vectors. Here we exhibit two generating sets for F p+1

2 � SL2(p) yielding a
negative answer to the above question. It can be shown that (i) the standard basis
of F p+1

2 is a single SL2(p) orbit and (ii) the union of two random orbits is an
expanding generating set for F p+1

2 . As we mentioned in subsection 11.1.2, there
exists a set S of four matrices in SL2(p) which are expanding.

By Theorem 11.22, combining our two generating sets on F p+1
2 with the gener-

ating set of SL2(p) creates two Cayley graphs on F p+1
2 � SL2(p). The first Cayley

graph comes from a set of six generators: the four generators of SL2(p) and rep-
resentatives of two random orbits. By Theorem 11.22 this graph is a replacement
product of two expander graphs, which is therefore an expander. The second Cay-
ley graph comes from a set of five generators for F p+1

2 �SL2(p): the four generators
of SL2(p) and a representative of the orbit of standard basis vectors. This Cay-
ley graph is a replacement product, where one of the constituent graphs is the
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Cayley graph of F p+1
2 with the standard basis vectors. This graph is simply the

discrete p + 1-dimensional cube, which has second eigenvalue at 1 − 1/(p + 1). A
replacement product can never have a smaller second eigenvalue than any of the
constituent graphs, which proves the nonexpansion result.

Second counterexample. By Theorem 11.27 the alternating group Ad has a
bounded generating set. Consequently, for every d, the symmetric group Sd has a
bounded generating set Ud such that C(Sd, Ud) are an expanding family. On the
other hand, Sd is generated by the permutation (12), the cycle (12 . . . d) and its
inverse. It is not hard to check that the resulting 3-regular Cayley graphs are not
expanders. (It is not hard to show that second eigenvalue which tends to zero when
d grows.)

11.5. Hypercontractive inequalities in groups? Isoperimetric problems on
Cayley graphs suggest numerous interesting questions that make sense only in this
more specialized domain. Consider the Cayley graph C(H, S) of a group H with a
(symmetric) generating set S. When we consider an edge cut E(T, V \T ), we can do
more than just count the number of edges in this set. Rather, for every s ∈ S we can
consider the number εs,T of edges in E(T, V \T ) that correspond to the generator s
or s−1. The usual isoperimetric inequality concerns only |E(T, V \T )| =

∑
s∈S εs,T .

There are, however, several other natural quantities to consider, the most natural
of which is

max
s∈S

εs,T .

A theorem of Kahn Kalai and Linial [KKL88] reveals an interesting phenomenon in
the graph of the discrete cube (which for the present discussion is the Cayley graph
of the group Fn

2 with the standard set of generators). For simplicity we quote only
a special case of this theorem.

Theorem 11.30 (Kahn-Kalai-Linial [KKL88]). Let T ⊆ {0, 1}n be a set of cardi-
nality |T | = 2n−1. Then there is an index 1 ≤ j ≤ n such that

εj,T ≥ Ω(
log n

n
· 2n).

The bound is tight.

Note that the isoperimetric inequality on the cube (see subsection 4.2.1) says
that

∑
j εj,T ≥ 2n−1, and the crux of the matter is the additional logarithmic

factor in the theorem. The proof of this theorem is based on a hypercontractive
inequality due to Bonami [Bon70] and Beckner [Bec75]. We should also note that
Theorem 11.30 has found numerous applications in different fields. This makes it
very interesting to seek similar phenomena in other groups.

12. Error correcting codes

Connections between error correcting codes, a central area in communication
and engineering, and expander graphs have seen enormous growth in the past two
decades, even though their roots go back to the 1960’s. Here we describe in detail
only one connection: the application of explicit lossless expanders of Section 10 to
the construction of the simplest known efficient asymptotically good codes. We also
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Decoder
Noisy channel

Encoder

Figure 15. Transmitting a message over a noisy channel.

briefly review other variants and connections and give some references. But first
we give some background to this important field.

Consider the problem of sending information through a noisy channel. Some
of the bits we transmit may be flipped due to noise in the channel. One way to
overcome channel errors is to use error correcting codes. Let us restrict our attention
to schemes that transmit the information in n-bit blocks. To make sure the receiver
can recover from bit-flip errors, we agree in advance that only a subset of the 2n

possible n-bit strings may be transmitted. We call such possible strings codewords
and would like our set of codewords to have two conflicting properties. The first
is that many bit flips are needed to transform one codeword into another, and the
second is that there are many codewords. These properties guarantee (respectively)
the robustness of our transmission scheme to channel errors and the efficiency of the
channel utilization. One further property that we crucially need is algorithmic in
nature. We would like an efficient implementation of the encoder and the decoder
in such a scheme.

To proceed, we need a better formulation of the concepts involved. We have to
be brief here, and the interested reader can refer to one of the standard texts in
this area, e.g., [MS77a, MS77b] and [vL99]. Sudan’s notes [Sud00] cover some of
the more recent developments and the algorithmic aspects of the field.

12.1. Definition of error correcting codes. We should mention that our dis-
cussion is restricted only to binary codes and to adversarial errors. We do not
consider codes over other alphabets and do not even mention any other interesting
error models that appear in the literature.

A code is a set of n-bit binary strings C ⊆ {0, 1}n. The distance of C, denoted
dist(C), is the minimum Hamming distance between a pair of distinct codewords
x, y ∈ C. That is minx�=y∈C dH(x, y), where the Hamming distance dH(x, y) is the
number of coordinates where x and y differ. The rate of C is rate(C) = log |C|/n.

The most natural way to decode received messages which are possibly noisy
is to decide for each received message y that the message sent was the codeword
x ∈ C that is closest (in Hamming distance) to y. It is easily verified that this
method is guaranteed to be correct as long as the number of bit-flips is bounded
by �(dist(C) − 1)/2�. Also, since we transmit log |C| bits of information for every
n channel bits, the efficiency of the code is log |C|/n, which is the code rate.

As mentioned above, our goal in designing a code is to maximize the rate as
well as the distance. Practical considerations make it also necessary that the code
be efficiently encodable and decodable. Ideally, both tasks should take only linear
time. The following definition formulates these basic requirements from a code.

Definition 12.1. A family Cn ⊂ {0, 1}n of codes is asymptotically good if there
are some fixed constants r > 0 and δ > 0 such that for all n both dist(C) > δn and
rate(C) > r. The family is called efficient if encoding and decoding (with ≤ δn/2
errors) can be performed in polynomial time in n.
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The existence of asymptotically good codes can be easily proved by a probabilis-
tic argument. The quest for good efficient codes took over two decades. Here we
will see a simple such construction, based on expander graphs. But first we need
to introduce linear codes.

12.2. Linear codes. It is often convenient to use linear codes. That is, C is to
be a linear subspace of Fn

2 . Such codes can be described concisely by specifying a
basis and therefore can be efficiently encoded in O(n2) time. On the other hand,
the decoding problem (that is, finding the closest codeword to a given word in a
given code) is already NP-hard. However, as we shall see, efficient algorithms exist
for words that are “close enough” to the code.

It is a simple but useful fact that the distance of a linear code equals the small-
est weight (number of ones) of a nonzero codeword, since the Hamming distance
between two vectors is the weight of their bit-wise sum.

12.3. Asymptotic bounds. Here are the basic upper and lower bounds on the
trade-off between the distance of a code and its size (and hence, also its rate).
Denote by v(n, r) the volume of the radius r ball in the Hamming cube, namely
v(n, r) =

∑r
i=0

(
n
i

)
.

12.3.1. Lower bounds on size: The Gilbert-Varshamov bound.

Theorem 12.2. There exists a length n code with distance ≥ d and size ≥
2n/v(n, d). Moreover, this statement holds even for linear codes.

Proof. This follows from the following (exponential time) greedy algorithm that
constructs a distance d code. We initialize S = {0, 1}n, C = ∅. At each step we
pick any point x ∈ S and add x to C. We then remove from S all the points that
are within distance ≤ d from x. The bound follows since the initial size of S is 2n,
and at each iteration the size of S is reduced by at most v(n, r).

As mentioned above, a linear code can be specified by giving a basis for the
subspace C ⊆ Fn

2 . Alternatively, we can also view C as the right kernel C =
{x|Ax = 0} of some m × n matrix A. (These equations are over the field F2.)
The matrix A is called a parity check matrix for C. By a previous comment, the
distance of C is the smallest number of columns in A whose sum is the zero vector.
We construct A a column at a time, always making sure that no dependent set of
fewer than d columns is created. We are able to construct the j-th column under
this condition provided that ∑

r<d

(
j − 1

r

)
< 2m

because the next columns must not coincide with the sum of any set of d − 1 or
fewer columns already in A. The most stringent case of this inequality is when
j = n and the resulting code C has dimension ≥ n − m and so |C| ≥ 2n−m (with
equality iff A has rank m). The conclusion follows. �

Let δ = d/n be the normalized distance of the code, for some δ ≤ 1/2. Then the
sum v(n, d) =

∑δn
i=0

(
n
i

)
is dominated by the last term

(
n
δn

)
. Therefore, the rate of

the resulting code is at least log(2n/
(

n
δn

)
)/n. Since log

(
n
δn

)
/n is approximately the

binary entropy function H(δ) = −δ log δ−(1−δ) log(1−δ), we obtain the following
asymptotic version of the Gilbert-Varshamov bound.
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Corollary 12.3. For every δ ≤ 1/2 and for large n, there exist (linear) codes with
normalized distance δ and rate r ≥ 1 − H(δ).

It is not known how to explicitly construct such codes. Neither is it known how
close this bound is to the optimum. As we’ll see momentarily, the best known upper
bound is exponentially far from this lower bound on code size.

12.3.2. Upper bounds: Sphere packing and linear programming.

Theorem 12.4. Any code C of length n and distance d satisfies |C| ≤ 2n/v(n, d/2).

Corollary 12.5. Every code of relative distance δ has rate r ≤ 1 − H(δ/2).

Proof of theorem. For a code C of distance d, all radius d/2 balls around the points
of C must be disjoint. The bound follows by dividing the size of the whole space
2n by the size of each such ball. �
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Figure 16. Asymptotic upper and lower bounds on rate vs. the
relative distance.

As Figure 16 shows, the sphere-packing bound (Theorem 12.4) is rather weak.
Indeed a much better upper bound and the “record holder” for nearly three decades
was found by McEliece, Rodemich, Rumsey, and Welch [MRRW77].23

Theorem 12.6. Every code of relative distance δ has rate r ≤ H(1/2−
√

δ(1 − δ)).

The relations between the lower bound and two upper bounds is illustrated in
Figure 16.

23See [MRRW77] or [vL99], Section 5.4, for a slight improvement due to the same authors.
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12.4. Codes from graphs. We now explain the basic connection between graphs
and linear codes, which was one of the initial motivations for the very definition of
expanders and the quest for their explicit construction.

Let A be a parity check matrix for C, i.e., C = {x|Ax = 0} where A is an m×n
matrix. Needless to say, a code C has many such representations, which depend on
the choice of a basis for the orthogonal complement of C. Remarkably, properties
of the underlying bipartite graph, most notably expansion properties, are crucial
for establishing lower bounds on its distance and designing efficient decoding of the
code. The connection is created by considering the bipartite graph G associated
with A. The m rows (n columns) of A correspond to m vertices on the right and
n on the left in G. There is an edge between the i-vertex on the right and the j-th
on the left in G iff aij = 1. We occasionally denote the resulting code by C(G).
It will be convenient to switch between the graph-theoretic and linear-algebraic
terminologies in our discussion.

As an example, the graph in Figure 17 represents a code of length 10, defined
by 5 equations, the first of which is v1 + v2 + v3 + v6 + v7 + v8 = 0 mod 2. It can
be verified that all equations are independent in this case, and therefore this is a
code of rate 1/2.
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Figure 17. The constraints graph of a code.

Below we briefly (and incompletely...) sketch some of the history of this branch
of error correction.

The idea of constructing codes this way was first suggested by Gallager [Gal63],
who used sparse bipartite graphs, giving rise to the term LDPC codes, for Low
Density Parity Check codes (as each parity check equation has a few nonzero co-
efficients). Gallager used random graphs, as explicit expanders did not exist at
the time. This idea was picked up in Russia by Pinsker and Bassalygo [BP73],
who sought out explicit constructions. They realized that expansion was at the
heart of Gallager’s arguments, formally defined expanders, and observed their util-
ity in other basic applications, most notably to robust communication networks. It
sparked the first two basic results in expander theory: Pinsker’s probabilistic proof
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that most sparse graphs are expanders [Pin73] mentioned in the first section, and
Margulis’ first explicit construction [Mar73], which is discussed several times in this
article. (See also his early paper on LDPC codes and girth, in [Mar82].)

The area fell dormant for quite a few years, and coding theorists concentrated
on algebraic techniques, until graph codes stormed again into consciousness in the
80’s and 90’s, with important works of Tanner [Tan81], Alon et al. [ABN92],
Sipser and Spielman [SS96], and more. This particular direction culminated in the
paper of Spielman [Spi96], which achieved linear time encoding and decoding for
asymptotically good codes.

All these constructions use regular graphs. An important idea due to Luby,
Mitzenmacher, Shokrollahi and Spielman [LMSS01] was to use bipartite graphs with
irregular degree distributions. These ideas were pushed further by Richardson and
Urbanke [RSU01, RU01], resulting in nearly linear time decoding of codes with rates
approaching channel capacity. (Our basic definition of rate applies only to a very
simple model of noise. These new bounds apply in a variety of models for noisy
communication channels.) We note that the underlying graphs here are typically
chosen at random; the required properties that guarantee the superior behavior of
the resulting codes cannot at present be obtained explicitly. Indeed the explicit
construction of such expanders is an excellent challenge for those interested in
research in this area. Work of Thorpe [Tho03] indicates that high lifts of carefully
chosen base graphs (see Section 6) may be the place to look for good graphs.
Consult the book of Richardson and Urbanke [RU] for further information on this
fast growing area.

Our next step is to describe a prototype of this family, achieving the goal of effi-
cient asymptotically good codes via the lossless expanders of the previous chapter.

12.5. Efficient asymptotically good codes from lossless expanders. Let
G = (VL; VR, E) be a bipartite graph that is k-regular24 on the left, such that
|VL| = n and |VR| = m. We will need the following variant of vertex expansion for
bipartite graphs.

Definition 12.7. The left vertex expansion ratio L(G, d) is the minimum of
|Γ(S)|/|S| over all nonempty sets S in VL of size at most d. In other words, every
such set satisfies |Γ(S)| ≥ L(G, d)|S|.

Note that L(G, d) cannot exceed k for any k-left-regular graph G and any d.
On the other hand, the results of [CRVW02] explained in Section 10 provide us
with explicit bipartite graphs G for any m = Ω(n) (and hence constant rate codes
C(G)) and expansion L(G, d) > .99k for d = Ω(n). We first see how these yield
asymptotically good codes, and later show that they actually suggest naturally
efficient (indeed, linear time) decoding. (Encoding in O(n2) time comes free with
the codes being linear. Linear time encoding algorithms can be achieved by paying
more attention to the graph’s structure.) The two theorems below, due to Sipser
and Spielman, were proved before explicit construction of lossless expanders were
available.

The code C(G) has large distance.

Theorem 12.8 (Sipser-Spielman [SS96]). If L(G, d) > k/2, then dist(C(G)) ≥ d.

24We use k for the degree here, as d is reserved for distance of the codes.
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Proof. Observe that in a k-left-regular bipartite graph with left expansion > k/2,
every nonempty set S ⊆ VL of size at most d has a Unique Neighbor, namely, a
vertex c ∈ VR such that |Γ(c) ∩ S| = 1. To see this, note that e(S, Γ(S)) = k|S|.
But |Γ(S)| > k|S|/2, since the expansion exceeds k/2. Therefore the average right
degree is less than 2, implying there must be at least one vertex with exactly one
neighbor in S.

We now use the unique neighbor property of sets of size at most d to prove that
every nonzero codeword x ∈ C(G) has weight at least d. Let S ⊂ VL be the support
of x, i.e., the set of coordinates v where xv = 1. We saw above that Γ(S) must
contain a vertex ν which has only one neighbor in S. But then the ν-th coordinate
of Ax is one, so x cannot be in the code C(G). �

The code C(G) can be efficiently decoded. We now turn to the decoding
of graph codes. Consider the following näıve iterative decoding algorithm: Upon
receiving the input n-bit string y, as long as there exists a variable such that most
of its neighboring constraints are not satisfied, flip it. In other words, given x �∈ C,
we flip the i-th bit provided that |A(x + ei)| < |Ax| (the first vector has smaller
Hamming weight).

This algorithm (and variants thereof) is often called belief propagation. This
is a powerful theme not only in error correction but in artificial intelligence and
computational learning theory. More often than not these are only heuristics, while
here this strategy always works.

Theorem 12.9 (Efficient Decoding, Sipser-Spielman [SS96]). Let G be a k-left-
regular bipartite graph in which L(G, d) > 3

4k. Let y be an n-bit string whose
distance from a codeword x is at most d/2. Then a repeated application of the
näıve decoding algorithm to y will return x after a linear number of iterations.

Proof. Let y(i) be the vector generated by the algorithm after i iterations, where
y = y(0). Let Ai be the set of errors at iteration i, i.e. Ai = {v : y

(i)
v �= xv}.

Then we have to prove that At is empty for t = O(n). Consider the set A = Ai

at iteration i (we discard the index i to avoid cumbersome notation), and assume
that A is not empty and that |A| ≤ d. Partition Γ(A) into satisfied neighbors S
and unsatisfied neighbors U . (That is U is the support of the vector Ax.) Then

|S| + |U | = |Γ(A)| >
3
4
k|A|.(21)

Now, count the edges between A and Γ(A) = U ∪ S. There are at least |U | edges
leaving U and at least 2|S| edges leaving S (every vertex in S has an even number
of neighbors in A). Therefore,

|U | + 2|S| ≤ k|A|.
A linear combination of these inequalities yields

|U | >
1
2
k|A|.(22)

Consequently, there is a variable in A with more than k/2 unsatisfied neighbors.
This implies that as long as there are errors and |A| ≤ d, some variable will be
flipped by the algorithm. Since we flip a vertex with more unsatisfied neighbors
than satisfied ones, |U | decreases with every step. We deduce that if the distance
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from x does not exceed d throughout the run of the algorithm, then the algorithm
will halt with the codeword x after a linear number of iterations.

To show that |Ai| can never exceed d, note that at any step |Ai| changes by ±1.
Therefore, if at any iteration |Ai| exceeds d, there must be an index (say i) such
that |Ai| = d. Then by (22), |Ui| > kd/2. On the other hand, by assumption, in
the beginning |A0| ≤ d/2, and therefore |U0| ≤ |Γ(A0)| ≤ kd/2, contradicting the
fact that |Ui| is decreasing with i. �

We conclude by mentioning a parallel version of the “belief propagation” algo-
rithm, where at every phase, all variables with a majority of violated constraints
flip their value. A similar analysis can be carried out to show that under similar
assumptions this algorithm converges to the correct codeword in O(log n) phases,
and with total work (=number of flips) O(n). The analysis (which we leave for the
reader, who can peek e.g. at [CRVW02]) utilizes lossless expansion to show that
the error sets Ai shrink by a constant factor with each iteration.

13. Metric embedding

Any metric space can be embedded into Euclidean space with some distortion of
the distances. In this section we prove that the graph metric of expander graphs is
the hardest metric to embed, in the sense that of all finite metric spaces with the
same number of points, expanders require the largest distortion.

The study of finite metric spaces and their embeddings has undergone tremen-
dous growth in the last decade. These developments are too wide in scope to
be surveyed here, and a few pointers are provided in subsection 13.5. Much like
expander graphs, discrete metric spaces are studied from at least three different
perspectives: geometric, combinatorial and computational. Our main goal here is
to briefly mention some of the main problems and results and show how the two
theories interact.

13.1. Basic definitions. A metric space is the pair (X, d), where X is a set of
points and d is the distance function d : X × X → R+. The distance function is a
symmetric nonnegative function satisfying the triangle inequality; that is, d(x, y) ≥
0 with equality if x = y, d(x, y) = d(y, x), and d(x, y) ≤ d(x, z) + d(z, y) for every
x, y, z ∈ X.

A main question we consider here is how well a finite metric space (X, d) can be
approximated by Euclidean metric. That is, our “model space” is R

n with l2 norm.
Let f : X → Rn be an embedding of the metric space (X, d) into (Rn, l2), where
the l2 distance between x, y ∈ R

n is ‖x − y‖ =
√∑n

i=1(xi − yi)2. We define:

expansion(f) = max
x1,x2∈X

‖f(x1) − f(x2)‖ / d(x1, x2),

contraction(f) = max
x1,x2∈X

d(x1, x2) / ‖f(x1) − f(x2)‖,

distortion(f) = expansion(f) · contraction(f).

It is clear that there are metric spaces that cannot be embedded without distor-
tion. For example, consider the metric ({1, 2, 3, 4}, d) of the star graph, depicted in
Figure 18, where d(1, 4) = d(2, 4) = d(3, 4) = 1, and d(i, j) = 2 otherwise.
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Figure 18. A graph that cannot be isometrically embedded into
a Euclidean metric.

Embedding this space into Rn with no distortion implies that each of the triplets
{1, 2, 4}, {1, 3, 4}, and {2, 3, 4} are on a single line. Therefore, all four points must
be on the same line, which clearly leads to a contradiction.

Aside from embeddings into Rn with l2 norm, there is great interest in embed-
dings into Rn with l1 norm. We will return to this issue below.

13.2. Finding the minimal l2 distortion. Let c2(X, d) denote the least possible
distortion in any embedding of the finite metric space (X, d) into (Rn, l2). The
dimension n of the host space is insignificant for the moment, since it is easy to see
that for finite X, the smallest distortion achievable can always be achieved with
dimension n ≤ |X|. In this section we present some bounds on the dimension and
distortion achievable for arbitrary metric spaces and derive an efficient algorithm to
calculate c2(X, d). The algorithm relies on a quadratic semidefinite characterization
of the problem. Using semidefinite duality, it leads to a simple way to prove lower
bounds on c2(X, d).

We start with the existential upper bound, the grand ancestor of this area.

Theorem 13.1 (Bourgain [Bou85]). Any n-point metric space (X, d) can be em-
bedded into Euclidean space with distortion ≤ O(log n).

We need some additional terminology here. Let S ⊂ R
n be a finite set S =

{z1, . . . , zN}. This yields an N -point metric space (X, d) where X = {x1, . . . , xN}.
The metric is defined via d(xi, xj) = ‖zi − zj‖, where ‖ · ‖ stands for the l2 norm.
Such a metric space (X, d) is called “an l2 metric”. A similar definition is made for
l1 metrics.

We recall the following easy fact which is proved e.g. in [DL97].25

Claim 13.2. That every l2 metric is also an l1 metric.

When we simply speak of an l1 (or l2) space, this indicates that for that statement
the dimension of the underlying space is immaterial.

The original statement of Theorem 13.1 was about embedding into l1, but the
same proof yields the stronger statement for embedding into l2. A major reason
that dimension plays only a minor role when we consider embeddings into l2 is the
following theorem which shows that in l2 the dimension can be significantly reduced
without significant loss in distortion. (We note that the analogous statement for l1
does not hold; see [BC03, LN04].)

25There is much more to be said about comparisons between norms in general and l2 in
particular. Much of the local theory of Banach Spaces, e.g. [MS86], revolves around such problems.
For an accessible proof of Dvoretzky’s Theorem, the grandfather of this discipline, see e.g. [Mat02].
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Theorem 13.3 (Johnson-Lindenstrauss [JL84]). Any n-point l2 metric can be em-
bedded into an O( log n

ε2 )-dimensional Euclidean space with distortion ≤ 1 + ε.

The proof of this extremely useful theorem is simple. It uses random linear pro-
jections to a low dimensional subspace and follows directly from the concentration
of measure under such mappings. Combining the two theorems, we see that a log-
arithmic distortion can be achieved even in logarithmic dimension. We now turn
to the algorithmic problem of computing distortion.

Theorem 13.4 (Linial-London-Rabinovich [LLR95]). There is a polynomial time
algorithm that given a metric space (X, d) (say by a matrix of distances) computes
c2(X, d).

Proof. The proof is based on semidefinite programming. Let (X, d) be a metric
space with |X| = n. Let f : X → Rn. Since one can always scale f so that
contraction(f) = 1, we have distortion(f) ≤ γ if and only if

(23) d(xi, xj)2 ≤ ‖f(xi) − f(xj)‖2 ≤ γ2d(xi, xj)2 for all 1 ≤ i < j ≤ n.

Let us recall some standard facts from linear algebra next. A symmetric n by
n matrix Z is said to be positive semidefinite if vT Zv ≥ 0 for all v ∈ Rn. This
is equivalent to each of the following two conditions: (i) All eigenvalues of Z are
nonnegative, and (ii) Z = WWT for some matrix W . We denote by PSD = PSDn

the collection of all n×n positive semidefinite matrices. We consider any embedding
f of X into Rn where f(xi) = ui and let U be the matrix whose i-th row is ui and
Z = UUT .

It follows that finding ui = f(xi) that satisfy (23) is equivalent to the existence
of a matrix Z ∈ PSD such that

(24) d(xi, xj)2 ≤ zii + zjj − 2zij ≤ γ2d(xi, xj)2 for all 1 ≤ i < j ≤ n,

since ‖ui−uj‖2 = zii+zjj−2zij for Z = UUT . Thus we conclude that c2(X, d) ≤ γ
if and only if there is a positive semidefinite matrix Z satisfying (24). Such an
optimization problem can be solved in polynomial time by the ellipsoid algorithm.
(See the book [GLS93] for general background in discrete optimization and the
ellipsoid algorithm.) �

The algorithm above constructs a primal problem and solves it by the ellipsoid
algorithm. The dual problem gives us an interesting characterization of c2(X, d)
that is handy in proving lower bounds on the distortion. When we transform a
primal problem to its dual we take a nonnegative combination of its constraints.
But how do we look at the constraint Z ∈ PSD? Again we need a simple but useful
fact from linear algebra.

Claim 13.5. A matrix Z is positive semidefinite if and only if
∑

i,j qijzij ≥ 0 for
all positive semidefinite matrices Q.
Proof.

⇐ : For v ∈ Rn, let Q be the PSD matrix defined by (Q)ij = vi · vj . Then,
vT Zv =

∑
i,j qijzij ≥ 0, implying that Z ∈ PSD.

⇒ : If Q is a PSD matrix of rank 1, then it has the form (Q)ij = vi · vj

for some v ∈ Rn. Therefore,
∑

i,j qijzij ≥ 0 for any PSD matrix Z. As
mentioned above, any PSD matrix Q can be written as WWT for some
matrix W with orthogonal rows. Therefore any Q ∈ PSD is the sum of
rank 1 PSD matrices, implying the required claim. �
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Theorem 13.6 (Linial-London-Rabinovich [LLR95]). The least distortion of any
finite metric space (X, d) in the Euclidean space is given by

c2(X, d) = max
P∈PSD, P ·1=0

√√√√ ∑
pij>0 pijd(xi, xj)2

−
∑

pij<0 pijd(xi, xj)2
.

Proof. As we saw, the primal problem is:∑
ij

qijzij ≥ 0 for all Q ∈ PSD,

zii + zjj − 2zij ≥ d(xi, xj)2 for all i, j,

γ2d(xi, xj)2 ≥ zii + zjj − 2zij for all i, j.

The dual program is the statement that for γ < c2(X, d), there must exist a non-
negative combination of the constraints of the primal problem that yields a contra-
diction.

We are looking for a linear combination of the constraints that yields the contra-
diction 0 ≥ 1. By Claim 13.5 this combination comes down to selecting a specific
Q ∈ PSD and writing

∑
ij qijzij ≥ 0. The rest of the inequalities should be com-

bined with coefficients so as to eliminate all zij from our inequalities. To eliminate
the off-diagonal entries, zij for i �= j, these coefficients are necessarily as follows:

• If qij > 0, then we add the constraint zii +zjj −2zij ≥ d(xi, xj)2 multiplied
by qij/2.

• If qij < 0, then we add the constraint γ2d(xi, xj)2 ≥ zii + zjj − 2zij multi-
plied by −qij/2.

In order that at the end of this process the coefficients of the diagonal entries zii

will be zero, we need that all the row sums of Q will be zero. Therefore, assuming
that

∑
j qij = 0 for all i, we obtained the following inequality:

0 ≥
∑

qij>0

qijd(xi, xj)2 + γ2
∑

qij<0

qijd(xi, xj)2.

The theorem follows by observing that this is a contradiction if γ2 is smaller than∑
qij>0

qijd(xi, xj)2/(−
∑

qij<0

qijd(xi, xj)2). �

13.3. Distortion bounds via semidefinite duality. We now demonstrate the
power of the above characterization to obtain optimal bounds on the distortion
of two natural metrics both of which are graph metrics. With every graph G =
(V, E) we associate the metric space (V (G), dG) where dG(u, v) is the distance in G
between the two vertices u, v. We use the shorthand c2(G) for c2(V (G), dG). Below
we derive optimal bounds on c2(G) for the discrete cube, as well as for expanders.
In particular, we show that the graph metrics of expanders are as far from l2 metrics
as possible.

13.3.1. Embedding the cube into l2. As in subsection 4.2.1 we denote the r-dimen-
sional discrete cube by Qr. Note that the graph metric of this graph coincides
with the Hamming metric. The identity embedding of this graph into (Rr, l2)
(every vertex is viewed as an r-dimensional vector) can be easily seen to have
distortion

√
r. Indeed the identity map has contraction

√
r and expansion 1. We
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use Theorem 13.6 to show that this embedding is the best possible. Let us define
the 2r × 2r matrix P :

P (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if d(i, j) = 1
r − 1 if i = j

1 if d(i, j) = r

0 otherwise.

It is easy to check that P1 = 0 and that P ∈ PSD. The latter holds, since P has
the same eigenvectors as the r-dimensional cube. Since

∑
pij>0 pijd(xi, xj)2 = 2r ·r2

and −
∑

pij<0 pijd(xi, xj)2 = 2r · r, we get that c2(Qr) ≥
√

r.

13.3.2. Embedding expander graphs into l2. Consider some k-regular26 graph G of
size n and λ2 ≤ k − ε, for fixed k > 2 and ε > 0. It is again simple to see
that G can be embedded with distortion O(log n) in l2. In fact, any graph can be
embedded with distortion equal to its diameter, which is O(log n) for an expander,
as observed in subsection 2.4. To see this, consider embedding a graph to the
vertices of a simplex in Rn: namely, mapping the i-th vertex to ei/

√
2, where ei is

the i-th vector of the standard basis for Rn. Since every two vertices of the simplex
have distance 1, the expansion is one and the contraction is equal to the diameter of
the graph. We prove that for constant degree expander graphs, such an embedding
is optimal up to a multiplicative constant independent of n.

Lemma 13.7. Let G = (V, E) be a k-regular graph of even size n. Let H = (V, E′)
be the graph on the same vertex set as G, where two vertices are adjacent if their
distance in G is at least �logk n�. Then H has a perfect matching.

Proof. Since G is a k-regular graph, then every vertex has at most kr vertices within
distance r. If r = �logk n� − 1, then there at most n/2 vertices within distance r,
and therefore H has minimal degree at least n/2. Therefore, it has a Hamiltonian
cycle by Dirac’s Theorem (e.g., Theorem 10.1.1 in [Die97]). It follows that H has
a perfect matching, as claimed. �

Theorem 13.8 (Linial-London-Rabinovich [LLR95]). Let k ≥ 3 be an integer and
let ε > 0. If G = (V, E) is an (n, k)-graph with λ2(G) ≤ k−ε, then c2(G) = Ω(log n)
where the implicit constant depends only on k and ε.

Proof. Let B be the adjacency matrix of a perfect matching in H, whose existence
is guaranteed by Lemma 13.7. Let P = kI − AG + ε

2 (B − I). It is easy to verify
that P1 = 0. To check that P is PSD, it suffices to consider the form xT Px for
some vector x⊥1. Then

xT (kI − AG)x ≥ (k − λ2)||x||2 ≥ ε||x||2,
xT (B − I)x =

∑
(i,j)∈B

(2xixj − x2
i − x2

j) ≥ −2
∑

(i,j)∈B

(x2
i + x2

j ) = −2||x||2.

26We use k for the degree in this section, as d is reserved for the distance.
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Therefore, xT Px = xT (kI − AG)x + xT (ε/2)(B − I)x ≥ 0. To obtain the lower
bound on c2(G) we evaluate

−
∑

pij<0

d(i, j)2pij = kn,

∑
pij>0

d(i, j)2pij ≥ ε

2
· n�logk n�2,

where the inequality follows since distances of edges in B are at least �logk n�. This
implies that c2(G) = Ω(log n), as claimed. �

The last two examples are both instances of Poincaré-type inequalities on graphs
(see [LMN02] for more on this). Let f be an embedding of the vertices of a graph
G into (Rn, l2). Poincaré-type inequalities compare between the average of ‖f(u)−
f(v)‖2 over all pairs of vertices u, v and the same average on the edges (u, v). Here
is such an inequality that illustrates this idea.

Theorem 13.9. Let G = (V, E) be a k-regular graph with second eigenvalue λ2.
For every embedding f : V → Rn

E(u,v)∈V ×V ‖f(u) − f(v)‖2 ≤ k

k − λ2
E(u,v)∈E‖f(u) − f(v)‖2.

Proof Sketch: Observe first that it suffices to prove the inequality for real functions
f , since both sides of the inequality are additive over dimensions. We can also
assume that f has zero average, since both sides are invariant under shifting f
by a constant. At this stage this is just the variational definition of the second
eigenvalue. �

The result both for the cube and for expanders can be derived (at least up to a
constant factor) from this inequality. In [LMN02] similar questions are considered
for graphs of high girth. We still do not have sharp bounds on that question.

13.4. Algorithms for cut problems via embeddings. Let us consider the fol-
lowing natural computational problem: Given an n-vertex graph G, compute or
estimate its expansion ratio h(G). We mention that there are many variants, like
balanced cut (estimating the number of edges to separate the graph into roughly
equal pieces), and others. These arise naturally as subroutines in many graph al-
gorithms as part of a “divide-and-conquer” approach, where small cuts guarantee
smaller interference between sub-solutions in the separate pieces.

Is has been known for a long time that the exact determination of h(G) is difficult
(co-NP hard) [BKV81]. There are numerous computational problems about cuts
in graphs which are known to be hard, and it is an open and fascinating problem
how well they can be approximated in polynomial time. A first breakthrough was
achieved by Leighton and Rao [LR99], who presented a polynomial time algorithm
that approximates h(G) to within an O(log n) factor for an n-vertex graph.

A different proof for this result was given in [LLR95]. This paper has estab-
lished the connection between this circle of problems and low-distortion embed-
dings of metric spaces. Before we survey this result, we should mention a recent
breakthrough [ARV04] which gives a polynomial time approximation algorithm for
computing h(G) up to a factor of only O(

√
log n). It is a beautiful open question

of whether an efficient algorithm exists that approximates h(G) up to a constant
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factor approximation. Some indications that this may be too optimistic were given
in [CKK05]. We will not be able to review here any of these exciting recent findings.

As mentioned above, there is a host of important and mostly difficult optimiza-
tion problems where the input is a graph G = (V, E) and where the objective is to
find a subset S ⊆ V so as to optimize some quantity related to the cut EG(S, S̄).
Up to a small factor, the question of finding h(G) falls into this category, since it
is easily verified that

2h(G)
n

≥ min
|EG(S, S̄)|
|S|(n − |S|) ≥ h(G)

n

where the minimum is over all subsets S ⊆ V . So let us concentrate on the prob-
lem of finding min |EG(S,S̄)|

|S|(n−|S|) . It is closely related to another classical computational
problem called the all-pairs multicommodity flow problem, which we now de-
fine.

The input to this problem is an n-vertex graph G = (V, E). Between every pair
of vertices we should “ship” δ > 0 units of a commodity, and we should maximize
δ subject to the following constraints:

• There are
(
n
2

)
distinct and unexchangable commodities, one for each pair

of vertices in G.
• Edge capacities are 1. Namely, it is possible to ship different commodities

through each edge as long as their total amount does not exceed 1.
• The flow of each commodity satisfies conservation of matter at each vertex.

Again, the problem is to find the largest δ > 0 for which this can be done. The
all-pairs multicommodity flow problem is a linear programming problem and can,
therefore, be solved in polynomial time. We denote the largest attainable δ by
δmax. The following lemma shows that the graph parameter δmax(G) provides an
O(log n) approximation for minS

|EG(S,S̄)|
|S|(n−|S|) . Consequently, we achieve a polynomial-

time algorithm that approximates h(G) to within an O(log n) factor.

Theorem 13.10 ([LLR95]). For every graph G = (V, E) the following inequality
holds:

δmax(G) ≤ min
S

|EG(S, S̄)|
|S|(n − |S|) ≤ O(δmax(G) · log n).

Proof Sketch: The left inequality is easy. Indeed, for any nonempty vertex set
S ⊂ V one has a total flow of |S|(n − |S|) through the cut. Since each edge has
capacity one, the flow cannot exceed E(S, S̄), yielding the bound.

To obtain the lower bound on δmax, we use linear programming duality. It is
not hard to show that the optimum of the all-pairs multicommodity flow problem
equals

δmax = min

∑
(i,j)∈E di,j∑
i,j∈V di,j

,(25)

where the minimum is with respect to all metrics d on the set V .
The basic idea of the proof is that if we restrict d to be an l1 metric, then two

things happen:
•

min

∑
(i,j)∈E di,j∑
i,j∈V di,j
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minimized over all l1 metrics d equals

min
S

|EG(S, S̄)|
|S|(n − |S|) .

• Restricting d in (25) to be an l1 metric increases this expression by a factor
of at most O(log n).

Together these claims imply the theorem. Somewhat like the argument in The-
orem 13.9, we’d like to reduce the problem to one-dimensional embeddings. Now a
simple property of l1 metrics is that they form a polyhedral convex cone; namely,
if d1 and d2 are two l1 metrics on the same finite set X, then so is a1d1 + a2d2

for every two nonnegative constants a1, a2. This cone is called the cut cone for
reasons which we will soon see. A whole book is dedicated to the basic properties
of this cone and its relatives [DL97].

The extreme rays of the cut cone are easy to determine: Associated with any
proper S ⊆ [n] is a metric dS on [n] as follows: dS(x, y) = 1 if exactly one of x, y is
in S and 0 otherwise. This is the so-called cut metric associated with S which
is easily seen to be an l1 metric. We can now approach the proof of Theorem 13.10
as follows: By Bourgain’s Theorem only a factor of O(log n) is lost if in minimizing
the right-hand side in Equation 25 we insist that the metric be in l1. Since the
cut cone is convex, the optimum among l1 metrics is obtained at an extreme ray,27

i.e., by a cut metric dS . In this case the right-hand side in Equation 25 becomes
|EG(S,S̄)|
|S|(n−|S|) , as claimed. �

This type of argument seems very alluring from a computational perspective.
Consider any optimization problem where we are given a graph G = (V, E) and
we seek a cut EG(S, S̄) which is optimal in some sense. By the same reasoning,
such a problem can be turned into a problem of convex optimization, in which we
are trying to optimize some objective function on the cut cone. There is a general
theory of discrete optimization as laid out in [GLS93], in which we try to optimize
some linear function over a convex domain Ω. In order to use this machinery we
must be able to solve efficiently two basic questions for Ω: (i) Membership - To
determine, given a point x, whether it belongs to Ω; and (ii) Separation - Same
as above, but if x �∈ Ω, find a hyperplane that separates x from Ω. Unfortunately,
the cut cone is computationally quite bad. Even the membership problem (which
is the simpler of the two) for the cut cone is NP-hard. In words: Given a metric,
it is difficult to decide whether it is an l1 metric.

This suggests the following natural problem first raised independently by Linial
and by Goemans:

Open problem 13.11. Is there a cone that is a good (preferably only constant
distortion) approximation to the cut cone and for which membership and separation
can be solved in time that is polynomial in the dimension?

They have also suggested a candidate for this job. We say that a metric space
(X, d) is of negative type if

√
d is an l2 metric. It is easy to show that metrics of

negative type form a convex cone for which both the membership and separation
problems can be solved efficiently. Also, every l1 metric is of negative type. In this

27There is a small technicality which we neglect here: We actually intersect the cone with some
hyperplane so as to do the optimization on some bounded domain.
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light, Linial and Goemans have posed the following conjecture, a positive answer
to which would realize the above-mentioned program.

Conjecture 13.12. Every metric of negative type can be embedded into an l1
metric with bounded distortion.

In a fascinating and still quite mysterious paper, Khot and Vishnoy [KV05]
have recently refuted this conjecture. However the lower bound they derive for the
distortion is very small (log log n)c for some 1 > c > 0 for n-point metrics. There
is clearly still a good story here waiting to unfold.

13.5. A glimpse into the bigger picture. As mentioned above, the previous
sections give only a very brief summary of a fascinating and highly active area of re-
search. For general reviews of this area see [Lin02], Chapter 15 in the book [Mat02],
and [IM04]. The quadratic programming method presented here has been used in
several additional cases [LMN02, LM00]. Progress in this area has been extremely
fast, and already these fairly recent surveys are by now outdated. To keep track of
the present state of affairs, the reader is encouraged to look up a list of open prob-
lems in this area that is being curated by J. Matousek: http://kam.mff.cuni.cz/
˜matousek/.

We also mention briefly another connection of (finite) expanders to metric em-
beddings of (infinite) graphs. There are conjectures in topology, most notably the
Baum-Connes Conjecture [Val03], which address the embeddability of manifolds
into Hilbert space with “uniform” distortion (a term which has to be properly de-
fined). Some extensions of these conjectures were recently disproved by Gromov
[Gro03] in an ingenious way whose spirit is the following. The “hard-to-embed”
manifolds will be (as in the finite setting) derived from expanders. The manifold is
defined via its “fundamental group”, an infinite group whose Cayley graph carries
the metric structure of the manifold. The definition of this group via generators and
relations guarantees that the above Cayley graph contains in it larger and larger
finite expanders, which (as we already know) do not embed well into l2. Carrying
out this plan is highly nontrivial, and we refer the reader to [Val03].
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Academic Press, London, 1972. MR0353467 (50:5950)
[Che70] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems

in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195–199. Princeton
Univ. Press, Princeton, NJ, 1970. MR0402831 (53:6645)
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