
The space complexity of approximating the frequency moments ∗

Noga Alon † Yossi Matias ‡ Mario Szegedy §

February 22, 2002

Abstract

The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are
the numbers Fk =

∑n
i=1m

k
i . We consider the space complexity of randomized algorithms that

approximate the numbers Fk, when the elements of the sequence are given one by one and cannot
be stored. Surprisingly, it turns out that the numbers F0, F1 and F2 can be approximated in
logarithmic space, whereas the approximation of Fk for k ≥ 6 requires nΩ(1) space. Applications
to data bases are mentioned as well.

1 Introduction

Let A = (a1, a2, . . . , am) be a sequence of elements, where each ai is a member of N = {1, 2, . . . , n}.
Let mi = |{j : aj = i}| denote the number of occurrences of i in the sequence A, and define, for each
k ≥ 0

Fk =
n∑
i=1

mk
i .

In particular, F0 is the number of distinct elements appearing in the sequence, F1 (= m) is the
length of the sequence, and F2 is the repeat rate or Gini’s index of homogeneity needed in order to
compute the surprise index of the sequence (see, e.g., [10]). We also define

F ∗∞ = max
1≤i≤n

mi .

∗A preliminary version of this paper appeared in Proceedings of the 28th Annual ACM Symposium on Theory of

Computing (STOC), May, 1996.
†Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

Aviv, Israel. Email: noga@math.tau.ac.il. Research supported in part by a USA-Israel BSF grant and by a grant from

the Israel Science Foundation. Part of the research was done while visiting AT&T Bell Labs, Murray Hill, NJ 07974,

USA.
‡Bell Laboratories, Murray Hill, NJ 07974, USA and Department of Computer Science, Tel Aviv University, Tel

Aviv, Israel. Email: matias@research.bell-labs.com.
§AT&T Research Labs, Florham Park, NJ, USA. Email: ms@research.att.com.

1

(Since the moment Fk is defined as the sum of k-powers of the numbers mi and not as the k-th root
of this sum we denote the last quantity by F ∗∞ and not by F∞.) The numbers Fk are called the
frequency moments of A and provide useful statistics on the sequence.

The frequency moments of a data set represent important demographic information about the
data, and are important features in the context of database applications. They indicate the degree
of skew of the data, which is of major consideration in many parallel database applications. Thus,
for example, the degree of the skew may determine the selection of algorithms for data partitioning,
as discussed by DeWitt et al [5] (see also references therein).

The recent work by Haas et al [12] considers sampling based algorithms for estimating F0, and
proposes a hybrid approach in which the algorithm is selected based on the degree of skew of the
data, measured essentially by the function F2. Since skew information plays an important role for
many applications, it may be beneficial to maintain estimates for frequency moments; and, most
notably, for F2. For efficiency purposes, the computation of estimates for frequency moments of a
relation should preferably be done and updated as the records of the relation are inserted to the
database. A more concrete discussion about the practical implications of such framework can be
found in [8].

Note that it is rather straightforward to maintain the (exact) frequency moments by maintaining
a full histogram on the data, i.e., maintaining a counter mi for each data value i ∈ {1, 2, . . . , n},
which requires memory of size Ω(n) (cf. [14]). However, it is important that the memory used for
computing and maintaining the estimates be limited. Large memory requirements would require
storing the data structures in external memory, which would imply an expensive overhead in access
time and update time. Thus, the problem of computing or estimating the frequency moments in one
pass under memory constraints arises naturally in the study of databases.

There are several known randomized algorithms that approximate some of the frequency moments
Fk using limited memory. For simplicity, let us consider first the problem of approximating these
numbers up to some fixed constant factor, say with relative error that does not exceed 0.1, and with
success probability of at least, say, 3/4, given that m ≤ nO(1). (In the following sections we consider
the general case, that is, the space complexity as a function of n, m, the relative error λ and the
error-probability ε.) Morris [15] (see also [6], [11]) showed how to approximate F1 (that is; how to
design an approximate counter) using only O(log logm) (= O(log log n)) bits of memory. Flajolet
and Martin [7] designed an algorithm for approximating F0 using O(log n) bits of memory. (Their
analysis, however, is based on the assumption that explicit families of hash functions with very strong
random properties are available.) Whang et al [17] considered the problem of approximating F0 in
the context of databases.

Here we obtain rather tight bounds for the minimum possible memory required to approximate
the numbers Fk. We prove that for every k > 0, Fk can be approximated randomly using at most
O(n1−1/k log n) memory bits. We further show that for k ≥ 6, any (randomized) approximation algo-

2

rithm for Fk requires at least Ω(n1−5/k) memory bits and any randomized approximating algorithm
for F ∗∞ requires Ω(n) space. Surprisingly, F2 can be approximated (randomly) using only O(log n)
memory bits.

In addition we observe that a version of the Flajolet-Martin algorithm for approximating F0 can
be implemented and analyzed using very simple linear hash functions, and that (not surprisingly)
the O(log log n) and the O(log n) bounds in the algorithms of [15] and [7] for estimating F1 and F0

respectively are tight.
We also make some comments concerning the space complexity of deterministic algorithms that

approximate the frequency moments Fk as well as on the space complexity of randomized or deter-
ministic algorithms that compute those precisely.

The rest of this paper is organized as follows. In Section 2 we describe our space-efficient ran-
domized algorithms for approximating the frequency moments. The tools applied here include the
known explicit constructions of small sample spaces which support a sequence of four-wise indepen-
dent uniform binary random variables, and the analysis is based on Chebyshev’s Inequality and a
simple application of the Chernoff bound. In Section 3 we present our lower bounds which are mostly
based on techniques from communication complexity. The final Section 4 contains some concluding
remarks and open problems.

2 Space efficient randomized approximation algorithms

In this section we describe several space efficient randomized algorithms for approximating the fre-
quency moments Fk. Note that each of these moments can be computed precisely and deterministi-
cally using O(n logm) memory bits, by simply computing each of the numbers mi precisely. Using
the method of [15] the space requirement can be slightly reduced, by approximating (randomly) each
of the numbers mi instead of computing its precise value, thus getting a randomized algorithm that
approximates the numbers Fk using O(n log logm) memory bits. We next show that one can do
better.

2.1 Estimating Fk

The basic idea in our algorithm, as well as in the next randomized algorithm described in this section,
is a very natural one. Trying to estimate Fk we define a random variable that can be computed under
the given space constraints, whose expected value is Fk, and whose variance is relatively small. The
desired result can then be deduced from Chebyshev’s Inequality.

Theorem 2.1 For every k ≥ 1, every λ > 0 and every ε > 0 there exists a randomized algorithm
that computes, given a sequence A = (a1, . . . , am) of members of N = {1, 2, . . . , n}, in one pass and

3

using

O

(
k log (1/ε)

λ2
n1−1/k(log n+ logm)

)
memory bits, a number Y so that the probability that Y deviates from Fk by more than λFk is at
most ε.

Proof. Define s1 = 8kn1−1/k

λ2 and s2 = 2 log(1/ε). (To simplify the presentation we omit, from now
on, all floor and ceiling signs whenever these are not essential). We first assume the length of the
sequence m is known in advance, and then comment on the required modifications if this is not the
case.

The algorithm computes s2 random variables Y1, Y2, . . . , Ys2 and outputs their median Y . Each
Yi is the average of s1 random variables Xij : 1 ≤ j ≤ s1, where the Xij are independent, identically
distributed random variables. Each of the variables X = Xij is computed from the sequence in
the same way, using O(log n + logm) memory bits, as follows. Choose a random member ap of the
sequence A, where the index p is chosen randomly and uniformly among the numbers 1, 2, . . . ,m.
Suppose that ap = l (∈ N = {1, 2, . . . , n}.) Let

r = |{q : q ≥ p, aq = l}| (≥ 1)

be the number of occurrences of l among the members of the sequence A following ap (inclusive),
and define

X = m(rk − (r − 1)k) .

Note that in order to compute X we only need to maintain the log n bits representing ap = l and
the logm bits representing the number of occurrences of l.

The expected value E(X) of X is, by definition,

E(X) =
m

m

[(
1k + (2k − 1k) + . . .+ (mk

1 − (m1 − 1)k)
)

+(
1k + (2k − 1k) + . . .+ (mk

2 − (m2 − 1)k)
)

+ · · ·+(
1k + (2k − 1k) + . . .+ (mk

n − (mn − 1)k)
)]

=
n∑
i=1

mk
i = Fk.

To estimate the variance Var(X) = E(X2)− (E(X))2 of X we bound E(X2);

E(X2) =
m2

m

[(
12k + (2k − 1k)2 + . . .+ (mk

1 − (m1 − 1)k)2
)

+(
12k + (2k − 1k)2 + . . .+ (mk

2 − (m2 − 1)k)2
)

+ · · ·+(
12k + (2k − 1k)2 + . . .+ (mk

n − (mn − 1)k)2
)]

≤ m
[(

k12k−1 + k2k−1(2k − 1k) + . . .+ kmk−1
1 (mk

1 − (m1 − 1)k)
)

+ (1)

4

(
k12k−1 + k2k−1(2k − 1k) + . . .+ kmk−1

2 (mk
2 − (m2 − 1)k)

)
+ · · ·+(

k12k−1 + k2k−1(2k − 1k) + . . .+ kmk−1
n (mk

n − (mn − 1)k)
)]

≤ m
[
km2k−1

1 + km2k−1
2 + . . .+ km2k−1

n

]
= kmF2k−1 = kF1F2k−1 ,

where (1) is obtained from the following inequality which holds for any numbers a > b > 0:

ak − bk = (a− b)(ak−1 + ak−2b+ · · ·+ abk−2 + bk−1) ≤ (a− b)kak−1 .

We need the following simple inequality:
Fact: For every n positive reals m1,m2 . . . ,mn(

n∑
i=1

mi

)(
n∑
i=1

m2k−1
i

)
≤ n1−1/k

(
k∑
i=1

mk
i

)2

.

(Note that the sequence m1 = n1/k,m2 = . . . = mn = 1 shows that this is tight, up to a constant
factor.)
Proof (of fact): Put M = max1≤i≤nmi, then Mk ≤

∑n
i=1m

k
i and hence(

n∑
i=1

mi

)(
n∑
i=1

m2k−1
i

)
≤
(

n∑
i=1

mi

)(
Mk−1

n∑
i=1

mk
i

)

≤
(

n∑
i=1

mi

)(
n∑
i=1

mk
i

)(k−1)/k (n∑
i=1

mk
i

)
=

(
n∑
i=1

mi

)(
n∑
i=1

mk
i

)(2k−1)/k

≤ n1−1/k

(
n∑
i=1

mk
i

)1/k (n∑
i=1

mk
i

)(2k−1)/k

= n1−1/k

(
n∑
i=1

mk
i

)2

,

where for the last inequality we use the fact that (
∑n
i=1mi)/n ≤ (

∑n
i=1m

k
i /n)1/k. 2

By the above fact, the definition of the random variables Yi and the computation above,

Var(Yi) = Var(X)/s1 ≤ E(X2)/s1 ≤ kF1F2k−1/s1 ≤ kn1−1/kF 2
k /s1 ,

whereas
E(Yi) = E(X) = Fk .

Therefore, by Chebyshev’s Inequality and by the definition of s1, for every fixed i,

Prob [|Yi − Fk| > λFk] ≤
Var(Yi)
λ2F 2

k

≤ kn1−1/kF 2
k

s1λ2F 2
k

≤ 1
8
.

It follows that the probability that a single Yi deviates from Fk by more than λFk is at most 1/8,
and hence, by the standard estimate of Chernoff (cf., for example, [2] Appendix A), the probability

5

that more than s2/2 of the variables Yi deviate by more than λFk from Fk is at most ε. In case this
does not happen, the median Yi supplies a good estimate to the required quantity Fk, as needed.

It remains to show how the algorithm can be implemented in case m is not known in advance. In
this case, we start with m = 1 and choose the member al of the sequence A used in the computation
of X as a1. If indeed m = 1, r = 1 and the process ends, else we update the value of m to 2, replace
al by a2 with probability 1/2, and update the value of r as needed. In general, after processing the
first m − 1 elements of the sequence we have (for each variable Xij) some value for al and for r.
When the next element am arrives we replace al by that element with probability 1/m. In case of
such a replacement, we update r and define it to be 1. Else, al stays as it is and r increases by 1 in
case am = al and otherwise does not change. It is easy to check that for the implementation of the
whole process, O(log n + logm) memory bits for each Xij suffice. This completes the proof of the
theorem. 2

Remark. In case m is much bigger than a polynomial in n, one can use the algorithm of [15] and
approximate each number r used in the computation of each Xij using only O(log logm+ log(1/λ))
memory bits. Since storing the value of al requires log n additional bits this changes the space
complexity to O

(
k log(1/ε)

λ2 n1−1/k(log n+ log logm+ log(1/λ))
)
.

2.2 Improved estimation for F2

The second frequency moment, F2, is of particular interest, since the repeat rate and the surprise
index arise in various statistical applications. By the last theorem, F2 can be approximated (for fixed
positive λ and ε) using O(

√
n(log n + logm)) memory bits. In the following theorem we show that

in fact a logarithmic number of bits suffices in this case.

Theorem 2.2 For every λ > 0 and ε > 0 there exists a randomized algorithm that computes, given
a sequence A = (a1, . . . , am) of members of N , in one pass and using

O

(
log (1/ε)

λ2
(log n+ logm)

)
memory bits, a number Y so that the probability that Y deviates from F2 by more than λF2 is at
most ε. For fixed λ and ε, the algorithm can be implemented by performing, for each member of the
sequence, a constant number of arithmetic and finite field operations on elements of O(log n+ log n)
bits.

Proof. Put s1 = 16
λ2 and s2 = 2 log(1/ε). As in the previous algorithm, the output Y of the present

algorithm is the median of s2 random variables Y1, Y2, . . . , Ys2 , each being the average of s1 random
variables Xij : 1 ≤ j ≤ s1, where the Xij are independent, identically distributed random variables.
Each X = Xij is computed from the sequence in the same way, using O(log n+ logm) memory bits,
as follows.

6

Fix an explicit set V = {v1, . . . , vh} of h = O(n2) vectors of length n with +1,−1 entries, which
are four-wise independent, that is, for every four distinct coordinates 1 ≤ i1 ≤ . . . ≤ i4 ≤ n and every
choice of ε1, . . . , ε4 ∈ {−1, 1} exactly a (1/16)−fraction of the vectors have εj in their coordinate
number ij for j = 1, . . . , 4. As described in [1] such sets (also known as orthogonal arrays of strength
4) can be constructed using the parity check matrices of BCH codes. To implement this construction
we need an irreducible polynomial of degree d over GF (2), where 2d is the smallest power of 2
greater than n. It is not difficult to find such a polynomial (using O(log n) space), and once it is
given it is possible to compute each coordinate of each vi in O(log n) space, using a constant number
of multiplications in the finite field GF (2d) and binary inner products of vectors of length d. To
compute X we choose a random vector vp = (ε1, ε2, . . . , εn) ∈ V , where p is chosen uniformly between
1 and h. We then define Z =

∑n
l=1 εimi. Note that Z is a linear function of the numbers mi, and

can thus be computed in one pass from the sequence A, where during the process we only have to
maintain the current value of the sum and to keep the value p (since the bits of vp can be generated
from p in O(log n) space). Therefore, Z can be computed using only O(log n + logm) bits. When
the sequence terminates define X = Z2.

As in the previous proof, we next compute the expectation and variance of X. Since the random
variables εi are pairwise independent and E(εi) = 0 for all i,

E(X) = E

(
n∑
i−1

εimi)2

 =
n∑
i=1

m2
iE(ε2i) + 2

∑
1≤i<j≤n

mimjE(εi)E(εj) =
n∑
i=1

m2
i = F2 .

Similarly, the fact that the variables εi are four-wise independent implies that

E(X2) =
n∑
i=1

m4
i + 6

∑
1≤i<j≤j

m2
im

2
j .

It follows that
Var(X) = E(X2)− (E(X))2 = 4

∑
1≤i<j≤n

m2
im

2
j ≤ 2F 2

2 .

Therefore, by Chebyshev’s Inequality, for each fixed i, 1 ≤ i ≤ s2,

Prob [|Yi − F2| > λF2] ≤ Var(Yi)
λ2F 2

2

≤ 2F 2
2

s1λ2F 2
2

=
1
8
.

The standard estimates of Chernoff now imply, as in the previous proof, that the probability that
the median Y of the numbers Yi deviates from F2 by more than λF2 is at most ε, completing the
proof. 2

Remark. The space complexity can be reduced for very large m to O
(

log (1/ε)
λ2 (log n+ log logm+

log(1/λ)) by applying the method of [15] to maintain the sum Z with a sufficient accuracy. The
easiest way to do so is to maintain approximations of the negative and positive parts of this sum
using O(log n+ log logm+ log(1/λ)) bits for each, and use the analysis in [11] (as given in formula
(22), section 3 of [11]) and Chebyshev’s Inequality to show that this gives, with a sufficiently high
probability, the required result. We omit the details.

7

2.3 Comments on the estimation of F0

Flajolet and Martin [7] described a randomized algorithm for estimating F0 using only O(log n)
memory bits, and analyzed its performance assuming one may use in the algorithm an explicit
family of hash functions which exhibits some ideal random properties. Since we are not aware of
the existence of such a family of hash functions we briefly describe here a slight modification of the
algorithm of [7] and a simple analysis that shows that for this version it suffices to use a linear hash
function.

Proposition 2.3 For every c > 2 there exists an algorithm that, given a sequence A of members of
N , computes a number Y using O(log n) memory bits, such that the probability that the ratio between
Y and F0 is not between 1/c and c is at most 2/c.

Proof. Let d be the smallest integer so that 2d > n, and consider the members of N as elements
of the finite field F = GF (2d), which are represented by binary vectors of length d. Let a and b be
two random members of F , chosen uniformly and independently. When a member ai of the sequence
A appears, compute zi = a · ai + b , where the product and addition are computed in the field F .
Thus zi is represented by a binary vector of length d. For any binary vector z, let r(z) denote the
largest r so that the r rightmost bits of z are all 0 and put ri = r(zi). Let R be the maximum
value of ri, where the maximum is taken over all elements ai of the sequence A. The output of the
algorithm is Y = 2R. Note that in order to implement the algorithm we only have to keep (besides
the d = O(log n) bits representing an irreducible polynomial needed in order to perform operations in
F) the O(log n) bits representing a and b and maintain the O(log log n) bits representing the current
maximum ri value.

Suppose, now, that F0 is the correct number of distinct elements that appear in the sequence A,
and let us estimate the probability that Y deviates considerably from F0. The only two properties
of the random mapping f(x) = ax+ b that maps each ai to zi we need is that for every fixed ai, zi
is uniformly distributed over F (and hence the probability that r(zi) ≥ r is precisely 1/2r), and that
this mapping is pairwise independent. Thus, for every fixed distinct ai and aj , the probability that
r(zi) ≥ r and r(zj) ≥ r is precisely 1/22r.

Fix an r. For each element x ∈ N that appears at least once in the sequence A, let Wx be the
indicator random variable whose value is 1 iff r(ax + b) ≥ r. Let Z = Zr =

∑
Wx, where x ranges

over all the F0 elements x that appear in the sequence A. By linearity of expectation and since the
expectation of each Wx is 1/2r, the expectation E(Z) of Z is F0/2r. By pairwise independence, the
variance of Z is F0

1
2r (1− 1

2r) < F0/2r. Therefore, by Markov’s Inequality

If 2r > cF0 then Prob(Zr > 0) < 1/c ,

since E(Zr) = F0/2r < 1/c. Similarly, by Chebyshev’s Inequality

If c2r < F0 then Prob(Zr = 0) < 1/c ,

8

since Var(Zr) < F0/2r = E(Zr) and hence Prob(Zr = 0) ≤ Var(Zr)/(E(Zr)2) < 1/E(Zr) = 2r/F0.
Since our algorithm outputs Y = 2R, where R is the maximum r for which Zr > 0, the two inequalities
above show that the probability that the ratio between Y and F0 is not between 1/c and c is smaller
than 2/c, as needed. 2

3 Lower bounds

In this section we present our lower bounds for the space complexity of randomized algorithms
that approximate the frequency moments Fk and comment on the space required to compute these
moments randomly but precisely or approximate them deterministically. Most of our lower bounds
are obtained by reducing the problem to an appropriate communication complexity problem, where
we can either use some existing results, or prove the required lower bounds by establishing those for
the corresponding communication problem. The easiest result that illustrates the method is the proof
that the randomized approximation of F ∗∞ requires linear memory, presented in the next subsection.
Before presenting this simple proof, let us recall some basic definitions and facts concerning the ε-error
probabilistic communication complexity Cε(f) of a function f : {0, 1}n×{0, 1}n 7→ {0, 1}, introduced
by Yao [18]. Consider two parties with unlimited computing power, that wish to compute the value
of a Boolean function f(x, y), where x and y are binary vectors of length n, the first party possesses
x and the second possesses y. To perform the computation, the parties are allowed to send messages
to each other, and each of them can make random decisions as well. At the end of the communication
they must output the correct value of f(x, y) with probability at least 1− ε (for the worst possible x
and y). The complexity Cε(f) is the expected number of bits communicated in the worst case (under
the best protocol).

As shown by Yao [19] and extended by Babai, Frankl and Simon [3], Cε(f) can be estimated by
considering the related notion of the ε-error distributional communication complexity Dε(f |µ) under
a probability measure on the possible inputs (x, y). Here the two parties must apply a deterministic
protocol, and should output the correct value of f(x, y) on all pairs (x, y) besides a set of inputs
whose µ-measure does not exceed ε. As shown in [19], [3], Cε(f) ≥ 1

2D2ε(f |µ) for all f , ε and µ.
Let DISn : {0, 1}n × {0, 1}n 7→ {0, 1} denote the Boolean function (called the Disjointness

function) where DISn(x, y) is 1 iff the subsets of {1, 2, . . . , n} whose characteristic vectors are x and
y intersect. Several researchers studied the communication complexity of this function. Improving
a result in [3], Kalyanasundaram and Schnitger [13] proved that for any fixed ε < 1/2, Cε(DISn) ≥
Ω(n). Razborov [16] exhibited a simple measure µ on the inputs of this function and showed that
for this measure Dε(DISn|µ) ≥ Ω(n). Our lower bound for the space complexity of estimating F ∗∞
follows easily from the result of [13]. The lower bound for the approximation of Fk for fixed k ≥ 6 is
more complicated and requires an extension of the result of Razborov in [16].

9

3.1 The space complexity of approximating F ∗∞

Proposition 3.1 Any randomized algorithm that outputs, given a sequence A of at most 2n elements
of N = {1, 2, . . . , n} a number Y such that the probability that Y deviates from F ∗∞ by at least F ∗∞/3
is less than ε, for some fixed ε < 1/2, must use Ω(n) memory bits.

Proof. Given an algorithm as above that uses s memory bits, we describe a simple communication
protocol for two parties possessing x and y respectively to compute DISn(x, y), using only s bits
of communication. Let |x| and |y| denote the numbers of 1-entries of x and y, respectively. Let A
be the sequence of length |x|+ |y| consisting of all members of the subset of N whose characteristic
vector is x (arranged arbitrarily) followed by all members of the subset of N whose characteristic
vector is y.

The first party, knowing x, runs the approximation algorithm on the first |x| members of A. It
then sends the content of the memory to the second party which, knowing y, continues to run the
algorithm for approximating F ∗∞ on the rest of the sequence A. The second party then outputs
“disjoint” (or 0) iff the output of the approximation algorithm is smaller than 4/3; else it outputs 1.
It is obvious that this is the correct value with probability at least 1 − ε, since the precise value of
F ∗∞ is 1 if the sets are disjoint, and otherwise it is 2.

The desired result thus follows from the theorem of [13] mentioned above. 2

Remark. It is easy to see that the above lower bound holds even when m is bigger than 2n, since
we may consider sequences in which every number in N occurs either 0 or m/n or 2m/n times. The
method of the next subsection shows that the linear lower bound holds even if we wish to approximate
the value of F ∗∞ up to a factor of 100, say. It is not difficult to see that Ω(log logm) is also a lower
bound for the space complexity of any randomized approximation algorithm for F ∗∞ (simply because
its final output must attain at least Ω(logm) distinct values with positive probability, as m is not
known in advance.) Thus Ω(n + log logm) is a lower bound for the space complexity of estimating
F ∗∞ for some fixed positive λ and ε. On the other hand, as mentioned in the previous section, all
frequency moments (including F ∗∞) can be approximated using O(n log logm) bits.
Note that in the above lower bound proof we only need a lower bound for the one-way probabilistic
communication complexity of the disjointness function, as in the protocol described above there is
only one communication, from the first party to the second one. Since the lower bound of [13] holds
for arbitrary communication we can deduce a space lower bound for the approximation of F ∗∞ even
if we allow algorithms that observe the whole sequence A in its order a constant number of times.

3.2 The space complexity of approximating Fk

In this subsection we prove the following.

Theorem 3.2 For any fixed k > 5 and γ < 1/2, any randomized algorithm that outputs, given an
input sequence A of at most n elements of N = {1, 2, . . . , n}, a number Zk such that Prob(|Zk−Fk| >

10

0.1Fk) < γ uses at least Ω(n1−5/k) memory bits.

We prove the above theorem by considering an appropriate communication game and by studying
its complexity. The analysis of the game is similar to that of Razborov in [16], but requires several
modifications and additional ideas.
Proof. For positive integers s and t, let DIS(s, t) be the following communication game, played
by s players P1, P2, . . . , Ps. Define n = (2t − 1)s + 1 and put N = {1, 2, . . . , n}. The input of each
player Pi is a subset Ai of cardinality t of N (also called a t-subset of N). Each player knows his
own subset, but has no information on those of the others. An input sequence (A1, A2, . . . , As) is
called disjoint if the sets Ai are pairwise disjoint, and it is called uniquely intersecting if all the sets
Ai share a unique common element x and the sets Ai − {x} are pairwise disjoint. The objective of
the game is to distinguish between these two types of inputs. To do so, the players can exchange
messages according to any predetermined probabilistic protocol. At the end of the protocol the last
player outputs a bit. The protocol is called ε-correct if for any disjoint input sequence the probability
that this bit is 0 is at least 1 − ε and for any uniquely intersecting input sequence the probability
that this bit is 1 is at least 1− ε. (The value of the output bit for any other input sequence may be
arbitrary). The length of the protocol is the maximum, over all possible input sequences (A1, . . . , As),
of the expected number of bits in the communication. In order to prove Theorem 3.2 we prove the
following.

Proposition 3.3 For any fixed ε < 1/2, and any t ≥ s4, the length of any randomized ε-correct
protocol for the communication problem DIS(s, t) is at least Ω(t/s3).

By the simple argument of [19] and [3], in order to prove the last proposition it suffices to exhibit
a distribution on the inputs and prove that any deterministic communication protocol between the
players in which the total communication is less than Ω(t/s3) bits produces an output bit that errs
with probability Ω(1), where the last probability is computed over the input distribution. Define a
distribution µ on the input sequences (A1, . . . , As) as follows. Let P = I1 ∪ I2 ∪ · · · ∪ Is ∪ {x} be a
random partition of N into s+ 1 pairwise disjoint sets, where |Ij | = 2t− 1 for each 1 ≤ j ≤ s, x ∈ N
and P is chosen uniformly among all partitions of N with these parameters. For each j, let Aj be a
random subset of cardinality t of Ij . Finally, with probability 1/2, define Aj = Aj for all 1 ≤ j ≤ s,
and with probability 1/2, define Aj = (Ij − Aj) ∪ {x} for all j. It is useful to observe that an
alternative, equivalent definition is to choose the random partition P as above, and then let each
Aj be a random subset of cardinality t of Ij ∪ {x}. If either none of the subsets Aj contain x or all
of them contain x we keep them as our input sets, and otherwise we discard them and repeat the
random choice.

Note that the probability that the input sequence (A1, . . . , As) generated under the above dis-
tribution is disjoint is precisely 1/2, whereas the probability that it is uniquely intersecting is also
1/2. Note also that µ gives each disjoint input sequence the same probability and each uniquely in-

11

tersecting input sequence the same probability. Let (A0
1, A

0
2, . . . , A

0
s) denote a random disjoint input

sequence, and let (A1
1, A

1
2, . . . , A

1
s) denote a random uniquely intersecting input sequence.

A box is a family X1 ×X2 × · · · ×Xs, where each Xi is a set of t-subsets N . This is clearly a
family of s-tuples of t-subsets of N . Standard (and simple) arguments imply that the set of all input
sequences (A1, A2, . . . , As) corresponding to a fixed communication between the players forms a box.
As we shall see later, this shows that the following lemma suffices to establish a lower bound on the
average communication complexity of any deterministic ε-correct protocol for the above game. Note
that in the statement of this lemma probabilities are taken over the distribution µ defined above.
Note also that the approach here is the probabilistic analogue of the common reasoning for deriving
lower bounds for deterministic communication complexity by showing that no large rectangles are
monochromatic.

Lemma 3.4 There exists an absolute constant c > 0 such that for every box X1 ×X2 × · · · ×Xs

Prob
[
(A1

1, A
1
2, . . . , A

1
s) ∈ X1 ×X2 × · · · ×Xs

]
≥

1
2e

Prob
[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

]
− s2−ct/s3 .

To prove the lemma, fix a box X1 ×X2 × · · · ×Xs. Recall that the distribution µ on the inputs has
been defined by first choosing a random partition P . For such a partition P , let ProbP [Aj ∈ Xj]
denote the conditional probability that Aj lies in Xj , given that the partition used in the random
choice of the input sequence (A1, . . . , As) is P . The conditional probabilities ProbP [A0

j ∈ Xj] and
ProbP [A1

j ∈ Xj] are defined analogously. A partition P = I1 ∪ I2 ∪ · · · ∪ As ∪ {x} is called j-bad,
where j satisfies 1 ≤ j ≤ s, if

ProbP [A1
j ∈ Xj] <

(
1− 1

s+ 1

)
ProbP [A0

j ∈ Xj]− 2−ct/s
3
,

where c > 0 is a (small) absolute constant, to be chosen later. The partition is bad if it is j-bad for
some j. If it is not bad, it is good.

We need the following two statements about good and bad partitions.

Lemma 3.5 There exists a choice for the constant c > 0 in the last inequality such that the following
holds. For any set of s − 1 pairwise disjoint t-subsets I ′r ⊂ N , (1 ≤ r ≤ s, r 6= j), the conditional
probability that the partition P = I1 ∪ I2 ∪ · · · ∪ Is ∪ {x} is j-bad, given that Ir = I ′r for all r 6= j, is
at most 1

20s .

Proof. Note that since Ir is known for all r 6= j, the union Ij ∪ {x} is known as well, and there are
only 2t possibilities for the partition P . If the number of t-subsets of Ij ∪ {x} that belong to Xj is
smaller than

1
2

(
2t
t

)
2−ct/s

3

12

then for each of the 2t possible partitions P , ProbP [A0
j ∈ Xj] < 2−ct/s

3
, implying that P is not

j-bad. Therefore, in this case the conditional probability we have to bound is zero and the assertion
of the lemma holds. Consider, thus, the case that there are at least that many t-subsets of Ij ∪ {x}
in Xj , let F denote the family of all these t-subsets and put Ij ∪ {x} = {x1, x2, . . . , x2t}. Let pi
denote the fraction of members of F that contain xi, and let H(p) = −p log2 p− (1− p) log2(1− p)
be the binary entropy function. By a standard entropy inequality (cf., e.g., [4]),

|F| ≤ 2
∑2t

i=1
H(pi) .

In order to determine the partition P = I1 ∪ I2 ∪ · · · ∪ Is ∪{x} we have to choose one of the elements
xi as x. The crucial observation is that if the choice of xi as x results in a j-bad partition P , then
pi < (1 − 1

s+1)(1 − pi), implying that H(pi) ≤ 1 − c′/s2 for some absolute positive constant c′. Let
b denote the number of elements xi whose choice as x results in a j-bad partition P . By the above
discussion

1
2

(
2t
t

)
2−ct/s

3 ≤ |F| ≤ 22t−bc′/s2 .

This implies that if t/s3 is much larger than log t, then b ≤ O(ct/s), and by choosing c to be
sufficiently small this upper bound for b is smaller than 2t/(20s), completing the proof of the lemma.
2

Lemma 3.6 If P = I1 ∪ I2 ∪ · · · ∪ Is ∪ {x} is a good partition then

ProbP
[
(A1

1, A
1
2, . . . , A

1
s) ∈ X1 ×X2 × · · · ×Xs

]
≥

1
e

ProbP
[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

]
− s2−ct/s3 .

Proof. By the definition of a good partition

ProbP [A1
j ∈ Xj] ≥ (1− 1

s+ 1
)ProbP [A0

j ∈ Xj]− 2−ct/s
3

for every j, 1 ≤ j ≤ s. Multiplying the above inequalities and using the definition of the distribution
µ as well as the fact that (1− 1

s+1)s > 1
e the desired result follows. 2

Returning to the proof of Lemma 3.4, let χ(P) be the indicator random variable whose value is
1 iff P is a bad partition. Similarly, let χj(P) be the indicator random variable whose value is 1 iff
P is j-bad. Note that χ(P) ≤

∑s
j=1 χj(P).

By computing the expectation over all partitions P

Prob
[
(A1

1, A
1
2, . . . , A

1
s) ∈ X1 ×X2 × · · · ×Xs

]
= E

(
ProbP

[
(A1

1, A
1
2, . . . , A

1
s) ∈ X1 ×X2 × · · · ×Xs

])
≥ E

(
ProbP

[
(A1

1, A
1
2, . . . , A

1
s) ∈ X1 ×X2 × · · · ×Xs

]
(1− χ(P))

)
≥ 1

e
E
(
ProbP

[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

]
(1− χ(P))

)
− s2−ct/s3 ,

13

where the last inequality follows from Lemma 3.6.
It follows that in order to prove the assertion of Lemma 3.4 it suffices to show that for every j,

1 ≤ j ≤ s,
E
(
ProbP

[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

]
χj(P)

)
(2)

≤ 1
2s

E
(
ProbP

[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

])
. (3)

Consider a fixed choice for the subsets Ir, r 6= j in the definition of the partition P = I1 ∪ I2 ∪ · · · ∪
Is ∪ {x}. Given this choice, the union U = Ij ∪ {x} is known, but the actual element x should still
be chosen randomly in this union. Given the above information on P , the quantity (3) is

1
2s

s∏
r=1

ProbP [A0
r ∈ Xr] ,

and each of these factors besides the one corresponding to r = j is fixed. The same s−1 factors appear
also in (2). The last factor in the above product, ProbP [A0

j ∈ Xj], is also easy to compute as follows.
Let l denote the number of t-subsets in Xj which are contained in Ij ∪{x}. Then ProbP [A0

j ∈ Xj] is
precisely l/

(2t
t

)
. Note, also, that for any choice of a member of U as x, the probability that A0

j lies in
Xj cannot exceed l/

(2t−1
t

)
= 2l/

(2t
t

)
. By Lemma 3.5, the probability that χj(P) = 1 given the choice

of Ir, r 6= j, is at most 1/(20s) and we thus conclude that

E
(
ProbP

[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

]
χj(P)

)
≤ 1

10s
E
(
ProbP

[
(A0

1, A
0
2, . . . , A

0
s) ∈ X1 ×X2 × · · · ×Xs

])
,

implying the inequality in (2), (3) and completing the proof of Lemma 3.4. 2

Proof of Proposition 3.3. Since it is possible to repeat the protocol and amplify the probabilities,
it suffices to prove the assertion of the proposition for some fixed ε < 1/2, and thus it suffices to show
that any deterministic protocol whose length is smaller than Ω(t/s3), applied to inputs generated
according to the distribution µ, errs with probability Ω(1). It is easy and well known that any fixed
communication pattern corresponds to a box of inputs. Therefore, if the number of communication
patterns in the end of which the protocol outputs 0 is smaller than ρ

s2ct/s
3

then, by summing the
assertion of Lemma 3.4 over all the boxes corresponding to such communication patterns, we conclude
that the probability that the protocol outputs 0 on a random input (A1

1, A
1
2, . . . , A

1
s) is at least 1

2e

times the probability it outputs 0 on a random input (A0
1, A

0
2, . . . , A

0
s) minus ρ. By choosing a

sufficiently small absolute constant ρ > 0 this shows that in this case the algorithm must err with
probability Ω(1). Thus, the number of communication patterns must be at least Ω(1

s2ct/s
3
) and

hence the number of bits in the communication must be at least Ω(t/s3). 2

Proof of Theorem 3.2. Fix an integer k > 5. Given a randomized algorithm for approximating
the frequency moment Fk for any sequence of at most n members of N = {1, 2, . . . , n}, where
n = (2t−1)s+1, usingM memory bits, we define a simple randomized protocol for the communication

14

game DIS(s, t) for s = n1/k, t = Θ(n1−1/k). Let A1, A2, . . . , As be the inputs given to the players.
The first player runs the algorithm on the t elements of his set and communicates the content of the
memory to the second player. The second player then continues to run the algorithm, starting from
the memory configuration he received, on the elements of his set, and communicates the resulting
content of the memory to the third one, and so on. The last player, player number s, obtains the
output Zk of the algorithm. If it is at most 1.1st he reports that the input sequence (A1, . . . , As)
is disjoint. Else, he reports it is uniquely intersecting. Note that if the input sequence is disjoint,
then the correct value of Fk is st, whereas if it is uniquely intersecting the correct value of Fk is
sk + s(t − 1) = n + s(t − 1) > (3t − 2)s = (3

2 + o(1))n. Therefore, if the algorithm outputs a good
approximation to Fk with probability at least 1 − γ, the protocol for DIS(s, t) is γ-correct and its
total communication is (s−1)M < sM . By Proposition 3.3 this implies that sM ≥ Ω(t/s3), showing
that

M ≥ Ω(t/s4) = Ω(n/s5) = Ω(n1−5/k) .

This completes the proof. 2

Remark. Since the lower bound in Proposition 3.3 holds for general protocols, and not only for
one-way protocols in which every player communicates only once, the above lower bound for the
space complexity of approximating Fk holds even for algorithms that may read the sequence A in its
original order a constant number of times.

We next show that the randomization and approximation are both required in the estimation of
Fk when using o(n) memory bits.

3.3 Deterministic algorithms

It is obvious that given a sequence A, its length F1 can be computed precisely and deterministically in
logarithmic space. Here we show that for any nonnegative k besides 1, even an approximation of Fk up
to, say, a relative error of 0.1 cannot be computed deterministically using less than a linear number
of memory bits. This shows that the randomness is crucial in the two approximation algorithms
described in Section 2. This is a simple corollary of the known results concerning the deterministic
communication complexity of the equality function. Since, however, these known results are not
difficult, we present a self contained proof, without any reference to communication complexity.

Proposition 3.7 For any nonnegative integer k 6= 1, any deterministic algorithm that outputs, given
a sequence A of n/2 elements of N = {1, 2, . . . , n}, a number Y such that |Y −Fk| ≤ 0.1Fk must use
Ω(n) memory bits.

Proof. Let G be a family of t = 2Ω(n) subsets of N , each of cardinality n/4 so that any two
distinct members of G have at most n/8 elements in common. (The existence of such a G follows
from standard results in coding theory, and can be proved by a simple counting argument). Fix
a deterministic algorithm that approximates Fk for some fixed nonnegative k 6= 1. For every two

15

members G1 and G2 of G let A(G1, G2) be the sequence of length n/2 starting with the n/4 members
of G1 (in a sorted order) and ending with the set of n/4 members of G2 (in a sorted order). When the
algorithm runs, given a sequence of the form A(G1, G2), the memory configuration after it reads the
first n/4 elements of the sequence depends only on G1. By the pigeonhole principle, if the memory
has less than log t bits, then there are two distinct sets G1 and G2 in G, so that the content of the
memory after reading the elements of G1 is equal to that content after reading the elements of G2.
This means that the algorithm must give the same final output to the two sequences A(G1, G1) and
A(G2, G1). This, however, contradicts the assumption, since for every k 6= 1, the values of Fk for the
two sequences above differ from each other considerably; for A(G1, G1), F0 = n/4 and Fk = 2kn/4
for k ≥ 2, whereas for A(G2, G1), F0 ≥ 3n/8 and Fk ≤ n/4 + 2kn/8. Therefore, the answer of the
algorithm makes a relative error that exceeds 0.1 for at least one of these two sequences. It follows
that the space used by the algorithm must be at least log t = Ω(n), completing the proof. 2

3.4 Randomized precise computation

As shown above, the randomness is essential in the two algorithms for approximating the frequency
moments Fk, described in Section 2. We next observe that the fact that these are approximation
algorithms is crucial as well, in the sense that the precise computation of these moments (for all k
but k = 1) requires linear space, even if we allow randomized algorithms.

Proposition 3.8 For any nonnegative integer k 6= 1, any randomized algorithm that outputs, given
a sequence A of at most 2n elements of N = {1, 2, . . . , n} a number Y such that Y = Fk with
probability at least 1− ε for some fixed ε < 1/2 must use Ω(n) memory bits.

Proof. The reduction in the proof of Proposition 3.1 easily works here as well and proves the above
assertion using the main result of [13]. 2

3.5 Tight lower bounds for the approximation of F0, F1, F2

The results in [15], [7] and those in Section 2 here show that logarithmic memory suffices to approx-
imate randomly the frequency moments F0, F1 and F2 of a sequence A of at most m terms up to
a constant factor with some fixed small error probability. More precisely, O(log logm) bits suffice
for approximating F1, O(log n) bits suffice for estimating F0 and O(log n+ log logm) bits suffice for
approximating F2, where the last statement follows from the remark following the proof of Theorem
2.2. It is not difficult to show that all these upper bounds are tight, up to a constant factor, as shown
below.

Proposition 3.9 Let A be a sequence of at most m elements of N = {1, 2, . . . , n}.
(i) Any randomized algorithm for approximating F0 up to an additive error of 0.1F0 with probability
at least 3/4 must use at least Ω(log n) memory bits.

16

(ii) Any randomized algorithm for approximating F1 up to 0.1F1 with probability at least 3/4 must
use at least Ω(log logm) memory bits.
(iii) Any randomized algorithm for approximating F2 up to 0.1F2 with probability at least 3/4 must
use at least Ω(log n+ log logm) memory bits.

Proof.
(i) The result follows from the construction in the proof of Proposition 3.7, together with the well
known fact that the randomized communication complexity of the equality function f(x, y) whose
value is 1 iff x = y, where x and y are l-bit numbers, is Θ(log l). Indeed, when run on an input
sequence of the form A(G1, G2) (in the notation of the proof of Proposition 3.7), the algorithm should
decide if G1 and G2 are equal or not.
(ii) Since the length F1 of the sequence can be any number up to m, the final content of the memory
should admit at least Ω(logm) distinct values with positive probability, giving the desired result.
(iii) The required memory is at least Ω(log n) by the argument mentioned in the proof of part (i)
and is at least Ω(log logm) by the argument mentioned in the proof of part (ii). 2

4 Concluding remarks

We have seen that there are surprisingly space efficient randomized algorithms for approximating
the first three frequency moments F0, F1, F2, whereas not much space can be gained over the trivial
algorithms in the approximation of Fk for k ≥ 6. We conjecture that an nΩ(1) space lower bound
holds for any k (integer or non-integer), when k > 2. It would be interesting to determine or estimate
the space complexity of the approximation of

∑n
i=1m

k
i for non-integral values of k for k < 2, or the

space complexity of estimating other functions of the numbers mi. The method described in Section
2.1 can be applied in many cases and give some nontrivial space savings. Thus, for example, it is
not too difficult to design a randomized algorithm based on the general scheme in Subsection 2.1,
that approximates

∑n
i=1 log(mi!) up to some fixed small relative error with some small fixed error-

probability, whenever m =
∑n
i=1mi ≥ 2n, using O(log n logm) memory bits. Here is an outline of

the algorithm. For s1 = O(log n) and an absolute constant s2, the algorithm computes s2 random
variables Y1, Y2, . . . , Ys2 and outputs their median Y . Each Yi is the average of s1 random variables
Xij : 1 ≤ j ≤ s1, where the Xij are independent, identically distributed random variables. Each of
the variables X = Xij is computed from the sequence in the same way, using O(logm) memory bits,
as follows. Choose a random member ap of the sequence A, where the index p is chosen randomly
and uniformly among the numbers 1, 2, . . . ,m. Suppose that ap = l (∈ N = {1, 2, . . . , n}.) Put

r = |{q : q ≥ p, aq = l}| (≥ 1),

and define X = m log r. It is not difficult to check that the expectation of X is E(X) =
∑n
i=1 log(mi!)

and its variance satisfies Var(X) ≤ O(log n)(E(X))2. This, together with Chebyshev’s Inequality,
implies the correctness of the algorithm, as in Subsection 2.1.

17

We finally remark that in practice, one may be able to obtain estimation algorithms which for
typical data sets would be more efficient than the worst case performance implied by the lower
bounds. Gibbons et al [9] recently presented an algorithm for maintaining an approximate list of the
k most popular items and their approximate counts (and hence also approximating F ∗∞) using small
memory, which works well for frequency distributions of practical interest.

Acknowledgment

We thank Colin Mallows for helpful comments regarding the statistics literature, and for pointing
out [10].

References

[1] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal
independent set problem, J. Algorithms 7(1986), 567-583.

[2] N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley and Sons Inc., New York,
1992.

[3] L. Babai, P. Frankl and J. Simon, Complexity classes in communication complexity theory, Proc.
of the 27th IEEE FOCS, 1986, 337-347.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, 1991.

[5] D.J. DeWitt, J.F. Naughton, D.A. Schneider, and S. Seshadri, Practical skew handling in parallel
joins, Proc. 18th Int’l. Conf. on Very Large Data Bases, 1992. pp. 27.

[6] P. Flajolet, Approximate counting: a detailed analysis, BIT 25 (1985), 113-134.

[7] P. Flajolet and G. N. Martin, Probabilistic counting, FOCS 1983, 76-82.

[8] P. Gibbons, Y. Matias and V Poosala, Fast incremental maintenance of approximate histograms,
Proc. 23rd Int’l. Conf. on Very Large Data Bases, to appear, 1997.

[9] P. Gibbons, Y. Matias and A. Witkowski, Practical maintenance algorithms for high-biased
histograms using probabilistic filtering, Technical Report, AT&T Bell Laboratories, Murray Hill,
NJ, Dec. 1995.

[10] I. J. Good, Surprise indexes and P -values, J. Statistical Computation and Simulation 32 (1989),
90-92.

[11] M. Hofri and N. Kechris, Probabilistic counting of a large number of events, Manuscript, 1995.

18

[12] P.J. Haas, J.F. Naughton, S. Seshadri, and L. Stokes, Sampling-Based Estimation of the Number
of Distinct Values of an Attribute, Proc. of the 21st VLDB Conference, 1995, 311-322.

[13] B. Kalyanasundaram and G. Schnitger, The probabilistic communication complexity of set in-
tersection, 2nd Structure in Complexity Theory Conference (1987), 41-49.

[14] Y. Ling and W. Sun, A supplement to sampling-based methods for query size estimation in a
database system, SIGMOD RECORD, 21(4) (1992), 12–15.

[15] R. Morris, Counting large numbers of events in small registers, CACM 21 (1978), 840-842.

[16] A. A. Razborov, On the distributional complexity of disjointness, Proc. of the ICALP (1990),
249-253. (To appear in Theoretical Computer Science.)

[17] K.-Y. Whang, B.T. Vander-Zanden, and H.M. Taylor, A linear-time probabilistic counting algo-
rithm for database applications, ACM Transactions on Database Systems, 15(2) (1990), 208-229.

[18] A. C. Yao, Some complexity questions related to distributed computing, Proc of the 11th ACM
STOC, 1979, 209-213.

[19] A. C. Yao, Lower bounds by probabilistic arguments, Proc of the 24th IEEE FOCS, 1983, 420-428.

19

