
CS41 Lab 12: Randomized and
Approximation Algorithms for

Three-Coloring
Thursday, April 16

Recall the Three-Coloring problem: Given a graph G = (V,E), output yes iff the vertices in
G can be colored using only three colors such that the endpoints of any edge have different colors.
In lab 10, you saw that Three-Coloring is NP-Complete. In this lab, we’ll look at several
approximation and randomised algorithms for the optimization version of Three-Coloring.

Let Three-Color-OPT be the following problem. Given a graph G = (V,E) as input, color
the vertices in G using at most three colors in a way that maximizes the number of satisfied edges,
where an edge e = (u, v) is satisfied if u and v have different colors.

For an arbitrary graph G = (V,E), let c∗ denote the maximum number of satisfiable edges.

1. Hardness of Three-Color-OPT. Show that if there is a polynomial-time algorithm for
Three-Color-OPT then P = NP.

2. Approximation Algorithm. Give a deterministic, polynomial-time (3/2)-approximation
algorithm for Three-Color-OPT. Your algorithm must satisfy at least 2c∗/3 edges.

3. Randomised Algorithms. Give randomised algorithms for Three-Color-OPT with the
following behavior:

(a) An algorithm with expected polynomial runtime that always outputs a three-coloring
that satisfies at least 2c∗/3 edges.

(b) An algorithm that runs in worst-case (i.e., not expected) polynomial time and produces
a three-coloring such that the expected number of satisfied edges is at least 2c∗/3.

(c) An algorithm that runs in worst-case polynomial time, and with probability at least 99%
outputs a three-coloring which satisfies at least 2c∗/3 edges. What is the running time
of your algorithm? The following inequality might be helpful: 1−x ≤ e−x for any x > 0.

1



4. Approximations via Reductions. (Extra Credit— only work on this problem after
having sketches for all previous problems). In class, you’ve seen many polynomial-time re-
ductions for decision problems, and you’ve used them to show that several problems are
NP-Complete. In this problem, you will attempt to use similar reductions to create new
approximation algorithms.

Our first reduction in class showed that Independent-Set≤PVertex-Cover. Given an
algorithm A for Vertex-Cover, we created the following algorithm for Independent-Set:

IS-alg(G = (V,E), k)

1 k′ := n− k.
2 z = A(G, k′).
3 return z.

Now, suppose we want an approximation algorithm for Independent-Set-OPT that uses
a 2-approximation algorithm A′ for Vertex-Cover-OPT. What should your algorithm for
Independent-Set-OPT do? Given the output from A′, what should your Independent-
Set-OPT algorithm output? What kind of approximation guarantee can you give?

Design and analyze an approximation algorithm for Independent-Set-OPT. Either prove
a formal guarantee for the approximation ratio of your algorithm, or give concrete evidence
why that ratio is impossible (or at least hard to calculate).

Alternately, design and analyze an approximation algorithm for Max-3-Sat using your
(3/2)-approximation algorithm for Three-Color-OPT.

5. Extra Credit. (Only work on this problem after having sketches for all previous problems).
Suppose we’re somehow told that a graph is three-colorable. Could that help us color the
graph? In this problem, you’ll shoot for a different kind of approximation. Give a polynomial
time deterministic algorithm that, given any three-colorable graph G = (V,E), colors the
graph using O(

√
n) colors. Note that the endpoints of each edge must be different colors, and

you’re given that its possible to color the graph using just three colors, but you don’t know
what the coloring is.

Here are a few hints to help you along:

(a) First, give a simple greedy algorithm that, given a graph G = (V,E) such that each
vertex has at most d neighbors, colors G using only d + 1 colors.

(b) Second, recall the algorithm for deciding if a graph is bipartite.

(c) Third, start coloring the three-colorable graph taking the vertex with the most neighbors,
and coloring those neighbors using just two colors.

2


