1. Consider the following graph $G = (V, E)$

with the following vertex weights: $w_a = 2, w_b = 3, w_c = 3, w_d = 2$.

(a) Give a minimal vertex cover.

(b) What is the minimum-weight vertex cover? what is the minimum weight?

(c) What is the optimal solution returned by the linear program we saw in class earlier this week? Note: don’t worry about finding the absolute optimal answer. However, you should at least find a feasible solution that has less weight than the vertex cover you saw in the first part.

(d) What is the weight of the vertex cover returned by the LP-based approximation algorithm? How does it compare to the min-weight vertex cover?
2. **Traveling Salesman Problem.** In this problem, a salesman travels the country making sales pitches. The salesman must visit \(n \) cities and then return to her home city, all while doing so as cheaply as possible.

The input is a complete graph \(G = (V, E) \) along with nonnegative edge costs \(\{c_e : e \in E\} \). A tour is a simple cycle \((v_j, \ldots, v_n, v_1)\) that visits every vertex exactly once.\(^1\) The goal is to output the minimum-cost tour.

For many TSP applications (such as when the cost is proportional to the distance between two cities), it makes sense for the edges to obey the triangle inequality: for every \(i, j, k \), we have

\[
c(i,k) \leq c(i,j) + c(j,k).
\]

This version is often called Metric-TSP.

The (decision version of the) Traveling Salesman Problem is NP-COMPLETE. For this problem, you will develop a 2-approximation algorithm for Metric-TSP.

(a) First, to gain some intuition, consider the following graph:

(b) *On your own* try to identify a cheap tour of the graph.

(c) Build some more intuition by computing the minimum spanning tree (MST) of the graph. Let \(T \) be your minimum spanning tree.

(d) Let \(OPT \) be the cheapest tour. Show that its cost is bounded below by the cost of the MST: \(\text{cost}(T) \leq \text{cost}(OPT) \).

(e) Give an algorithm which returns a tour \(A \) which costs at most twice the cost of the MST: \(\text{cost}(A) \leq 2 \text{cost}(T) \).

(f) Conclude that your algorithm is a 2-approximation for Metric-TSP.

\(^1\) except for the start vertex which we visit again to complete the cycle.