
CS41 Homework 2

This homework is due at 10pm on Sunday, September 20. Write your solution using LATEX. Submit
this homework using github as a file called hw2.tex. This is an individual homework. It’s ok to
discuss approaches at a high level. In fact, we encourage you to discuss general strategies. However,
you should not reveal specific details of a solution, nor should you show your written solution to
anyone else. The only exception to this rule is work you’ve done with a lab partner while in lab.
In this case, note (in your README file) who you’ve worked with and what parts were solved
during lab.

The main learning goals of this lab are to work with stable matching and the Gale-Shapley
algorithm, and get comfortable analyzing it and applying it.

1. Find the Stable Matching. Below is an input to the stable matching problem:

� 5 hospitals: [Abington, Brandywine, CHOP, Delaware County Memorial (DCM), Ein-
stein Medical Center (EMC)]

� 5 doctors: [Alice, Bob, Chenye, Dmitri, Eva]

� Hospital Preferences (in each list, doctors are ordered from most to least preferred, so
e.g. Abington’s top choice for doctor is Bob, and least prefered doctor is Alice)

– Abington: [Bob, Eva, Chenye, Dmitri, Alice]

– Brandywine: [Eva, Bob, Chenye, Alice, Dmitri]

– CHOP: [Bob, Chenye, Alice, Eva, Dmitri]

– Delaware County Memorial: [Chenye, Eva, Alice, Bob, Dmitri]

– Einstein Medical Center: [Eva, Alice, Dmitri, Bob, Chenye]

� Doctor Preferences (in each list, hospitals are ordered from most to least preferred)

– Alice: [Abington, Brandywine, CHOP, DCM, EMC]

– Bob: [CHOP, Brandywine, Abington, EMC, DCM]

– Chenye: [CHOP, Brandywine, Abington, DCM, EMC]

– Dmitri: [DCM, Brandywine, CHOP, Abington, EMC]

– Eva: [CHOP, Brandywine, EMC, DCM, Abington]

Give a stable (hospital-doctor) matching for this input.

2. Socially Distant Foodies. A group of n foodies1 F = {f1, . . . , fn} are touring a set of n new
restaurants R = {r1, . . . , rn} over the course of m ≥ n days, in search of their new favorite
restaurants. Each foodie fj has an itinerary where he/she decides to visit one restaurant per
day (or perhaps take a day off if m > n). However, because of the global pandemic, the
foodies prefer not to share restaurants with each other. Furthermore, each foodie is looking
for a favorite restaurant to call his or her own. Each foodie f would like to choose a particular
day df and stay at his/her current restaurant rf for the remaining m− df days of the tour.
Of course, this means that no other foodies can visit rf after f arrives at rf .

1a foodie is a food enthusiast

1



Show that no matter what the foodies’ itineraries are, it is possible to assign each foodie f
a unique restaurant rf such that when f arrives at rf according to the itinerary for f , all
other foodies have either stopped touring restaurants themselves, or f ′ will not visit rf after
f arrives at rf .

Hint: Solve this problem by reducing to stable matching. The input is somewhat like the
input to stable matching, but at least one piece is missing. Find a clever way to construct
the missing piece(s), run stable matching, and show that the final result solves this problem.

3. Sorting to Half-Sorting. In the half-sort problem, you’re given an array of n integers
and must return an array that has the first dn/2e integers in sorted order. For example, if
your array is A = [5, 9, 1, 2, 6, 3], then a valid output of half-sort(A) might be [1, 2, 3, 9, 5, 6]
since 1, 2, 3 are the least elements of A.

� Reduce the sorting problem to half-sort. i.e., imagine you have an algorithm A for
half-sort, and use it to design a sorting algorithm.

� Now, suppose that your friend claims to have an algorithm for half-sort that runs in
10n time in the worst case. What is the runtime of your sorting algorithm? Is 10n a
reasonable running time for half-sort?

4. (extra challenge problem) In class, we discussed a version of the stable matching problem
where we want to match n doctors to n hospitals. In this problem, we discuss the homogeneous
version. The input is a set of students A = {s1, . . . , s2n} of size 2n. Each student ranks the
others in order of preference. A homework partner assignment of students into partners
M = {(i, j)} is a matching; it is unstable if there exists (i, j), (i′, j′) ∈ M such that i prefers
j′ to j and that j′ prefers i to i′. It is stable if it is a perfect matching and there are no
instabilities.

(a) Does a stable homework partner assignment always exist? Prove that such an assigment
must always exist, or give an example where no stable assignment occurs. (Remember,
you must have 2n students.)

(b) Design and analyze an efficient algorithm that either returns a stable matching for home-
work partners or outputs that no such matching exists.

2


