CS41 Homework 10

This homework is due at 5:00PM on Friday, November 20. Write your solution using TEX. Submit this
homework using github as a file called hw9.tex. This is a partnered homework. It’s ok to discuss
approaches at a high level with others; however, you should primarily discuss approaches with your
homework partner.

If you do discuss problems with others, you should not reveal specific details of a solution, nor should
you show your written solution to anyone else. The only exception to this rule is work you’ve done with a
lab partner while in lab. In this case, note (in your homework submission poll) who you’ve worked with
and what parts were solved during lab.

1. Test Your Intuition. Consider the following claim:

Claim 1. Let G be an arbitrary flow netwrok, with a source s, sink t, and a positive integer capacity
ce on every edge e. Let (A, B) be a minimum s—t cut with respect to these edge capacities {c. : e € E}.
Now, suppose we add 1 to every edge capacity. Then, (A, B) is still a minimum s —t cut with respect
to these new capacities {1 + c. : e € E}.

Answer whether you think the claim is TRUE or FALSE. If you answer TRUE, give a short explanation
why it is true. If you answer FALSE, give a counterexample showing the claim is false.

2. Evacuation Congestion. (K& T 7.14) When handling natural disasters like hurricanes or wildfires,
state and federal agencies need to plan how to evacuate potentially thousands of people. One major
challenge is that evacuees might take the same routes to evacuation points. The resulting road con-
gestion can hinder evacuation. In this problem, you will design an algorithm to help agencies minimze
this congestion. The input to this problem is as follows;

e a directed graph G = (V, E).
e a collection of populated vertices A — V.

e a collection of safe vertices B < V.

Assume A and B are disjoint. In case of an emergency, we want evacuation routes from the populated
vertices to the safe vertices. A set of evacuation routes is defined as a set of paths in G so that (i) each
node in A is the tail of one path, (ii) the last node in each path is in B, and (iii) the paths do not
share any edges. Such a set of paths gives a way for the occupants of the populated vertices to escape
to B without overly congesting any edge in G.

(a) Given G, A, and B, show how to decide in polynomial time whether such a set of evacuation
routes exists.

(b) Suppose we have the same problem as before, but now condition (iii) is that paths do not share
any wvertices. Show how to decide in polynomial time whether such a set of evacuation routes
exists.

(c) Provide an example input G, A, B such that the answer is yes to the question in (a) but no to the
question in (b).

3. Advertising contracts (K& T 7.16)

Back in the euphoric early days of the Web, people liked to claim that much of the enormous potential
in a company like Yahoo! was in the “eyeballs”—the simple fact that millions of people look at its
pages every day. Further, by convincing people to register personal data with the site, a site like
Yahoo! can show each user an extremely targeted advertisement whenever the user visits the site, in a
way that TV networks or magazines couldn’t hope to match. So if a user has told Yahoo! that she is



a 21-year-old computer science major at Swarthmore, the site can present a banner ad for apartments
in Philadelphia suburbs; on the other hand, if she is a 50-year-old investment banker from Greenwich,
CT, the site can display a banner ad pitching luxury cars instead.

But deciding on which ads to show to which people involves some serious computation behind the
scenes. Suppose that the managers of a popular site have identified k£ distinct demographic groups
G1,Ga,...,Gg. (Some may overlap.) The site has contracts with m different advertisers to show a
certain number of copies of their ads to users of the site. Here’s what a contract with the i*® advertiser
looks like:

e For a subset X; € {Gq,...,G} of the demographic groups, advertiser ¢ wants ads shown only to
users who belong to at least one of the groups listed in Xj.

e For a number r;, advertiser ¢ want its ads shown to at least r; users each minute.

Consider the problem of designing a good advertising policy — a way to show a single ad to each user
of the site. (Imagine a world where each user saw only one ad per site.) Suppose at a given minute,
there are n users visiting the site. Because we have registration about each of the users, we know that
user j belongs to a subset U; of the demographic groups.

The problem is: is there a way to show a single ad to each user so that the site’s contracts with each
of the m advertisers is satisfied for this minute?

Give an efficient algorithm to decide if this is possible, and if so, to actually choose an ad to show each
user.

4. MULTIPLE-INTERVAL-SCHEDULING (K&T 8.14) In this problem, there is a machine that is available
to run jobs over some period of time, say 9AM to 5PM.

People submit jobs to run on the processor; the processor can only work on one job at any simgle point
in time. However, in this problem, each job requires a set of intervals of time during which it needs
to use the machine. Thus, for example, one job could require the processor from 10AM to 11AM and
again from 2PM to 3PM. If you accept this job, it ties up your machine during these two hours, but
you could still accept jobs that need any other time periods (including the hours from 11AM to 2PM).

Now, you’re given an integer k and a set of n jobs, each specified by a set of time intervals, and you
want to answer the following question: is it possible to accept at least k& of the jobs so that no two of
the accepted jobs have any overlap in time?

In this problem, you are to show that MULTIPLE-INTERVAL-SCHEDULING € NP-COMPLETE. To assist
you, we’ve broken down this problem into smaller parts:

(a) First, show that MULTIPLE-INTERVAL-SCHEDULING € NP.

(b) In the remaining two parts, you will reduce
INDEPENDENT-SET <p MULTIPLE-INTERVAL-SCHEDULING .

Given input (G = (V, E), k) for INDEPENDENT-SET, create a valid input for MULTIPLE-INTERVAL-
SCHEDULING. First, divide the processor time window into m distinct and disjoint intervals
i1,...,%m. Associate each interval i; with an edge e;. Next, create a different job .J, for each
vertex v € V. What set of time intervals should you pick for job J,?

(¢) Finally, run the MULTIPLE-INTERVAL-SCHEDULING algorithm on the input you create, and output
YES iff the MULTIPLE-INTERVAL-SCHEDULING algorithm outputs YES. Argue that the answer to
MULTIPLE-INTERVAL-SCHEDULING gives you a correct answer to INDEPENDENT-SET.

5. (Extra Challenge Problem.) Does P = NP? Answer YES or NO. Justify your response with a
formal proof.



