
CS41 Lab 9
November 2, 2020

The learning goals of lab this week are (i) to understand how dynamic programming a�ects runtime
of algorithms in practice, and (ii) to continue to practice building DP algorithm design skills. I
encourage you to work on the �rst problem and then whichever problem looks interesting.
General Hints:

� Focus on the choice you might make to construct an optimal solution.

� Initially focus on the �rst two steps of the dynamic programming process. Don't stress about
pseudocode until after you've solved all lab problems.

� Note: To complete problem 1 you will need to access CS Department lab machines. See the
Remote Tools guide for instructions on how to remotely log on to department machines.

1. Shortest Paths with Negative Edge Weights. In lecture today, we saw the Shortest
Paths with Negative Edge Weights (SP-NEW) problem. Here, the inputs are a directed graph
G = (V,E) with edge costs {ce}, as well as start/end vertices s, t ∈ V . Your goal is to output
the cost of the minimum s t path. We assume that G has no negative cycles, but otherwise
edges can have negative cost.

In lecture today, we saw that when edge costs are negative, Dijkstra's algorithm doesn't always
compute the minimum-cost path.

Here is an interesting idea for solving SP-NEW:

� Given G = (V,E), scan the edges and compute the minimum edge cost: M := maxe∈E ce.

� For each edge e, let c′e := ce + M .

� Run Dijkstra's algortihm on G with the new edge costs {c′e}, which are all now nonneg-
ative.

� Return the distance returned by Dijkstra's algorithm.

This algorithm doesn't quite work, because there are graphs G such that the minimum-cost
path using edge costs {ce} is not the minimum-cost path using edge costs {c′e}.
Provide such an example. Your goal is to give an input for SP-NEW such that the minimum-
cost s t path is di�erent using edge costs {ce} vs {c′e}

2. Testing RNA Substructure Implementations. Last week, we introduced the RNA Sub-
structure problem and developed an e�cient algorithm for RNA Substructure that uses dy-
namic programming.In this lab problem, you'll see this solution in practice.

In /home/brody/public/cs41/, you'll �nd two executables: rna-A, and rna-B. One uses dy-
namic programming to solve the RNA Substructure problem, and one solves it without storing
solutions to overlapping subproblems in a table. Each implementation takes in the name of
a �le containing a single string representing an RNA molecule, and returns the size of the
largest matching (following the RNA substructure rules discussed in class).

1

https://www.cs.swarthmore.edu/~brody/cs41/f20/remotetools/cs41remote.php


For this exercise, you'll use the UNIX time command to examine the runtime of each imple-
mentation. For example, to measure how much time rna-A takes on input rna_test_data/test1,
execute

$ time /home/brody/public/cs41/rna-A /home/brody/public/cs41/rna_test_data/test1

(a) Using the test �les in rna_test_data and your own test �les, determine which program
uses dynamic programming and which does not.

(b) How large can inputs be? For both rna-A and rna-B, create input �les of di�erent
sizes and determine how large the input can be if the implementation must run in at
most 30 seconds.

(c) How does the runtime scale? Again for each implementation, create some test �les
of di�erent lengths, and measure the execution time and how it scales with the size of
the inputs. Use this to guess what the implementation's runtime is. Is rna-A an O(n2)
algorithm? or O(n3) or O(n4)? O(2n)? Do the same for rna-B.

3. Longest Palindrome. Let Σ be a �nite set called an alphabet.1 A palindrome is a string
which reads the same backwards and forwards. Let s be a string of characters from Σ and let
x ∈ Σ be some character. The reversal of s is denoted sR. Then the strings ssR (that is, s
concatenated with sR) and scsR are both palindromes.

In the Longest Palindrome Problem, you're given a string x of n characters from Σ and
must output the length of the longest palindrome that is a substring of x.

(a) Brie�y describe a simple Θ(n3) algorithm that solves the longest palindrome problem.
Why is your algorithm Θ(n3)?

(b) Design an algorithm that uses dynamic programming to solve the longest palindrome
problem in less than n3 time.

4. Gerrymandering (K& T 6.24) Gerrymandering is the practice of carving up electoral
districts in very careful ways so as to lead to outcomes that favor a particular political party.
Recent court challenges to the practice have argued that through this calculated redistricting,
large numbers of voters are being e�ectively (and intentionally) disenfranchised.

Suppose we have a set of n precincts P1, . . . , Pn, each containing m registered voters. We're
supposed to divide these precincts in to two districts, each consisting of n/2 precincts. Now,
for each precinct, we have information on how many voters are registered to each of two
political parties. Say that the set of precincts is susceptible to gerrymandering if it is possible
to perform the division into two districts in such a way that the same party holds a majority
in both districts.

Give an algorithm to determine whether a given set of precincts is susceptible to gerryman-
dering. The running time of your algorithm should be polynomial in n and m.

For example, suppose there are four precincts, and two political parties A and B. Letting Ai

and Bi be the number of voters in precinct i of each political party, Suppose we have

A1 = 55, A2 = 43, A3 = 60, A4 = 47 and

1For example, Σ might be {0, 1} or {a, b, c, . . . , z}.

2



B1 = 45, B2 = 57, B3 = 40, B4 = 53 .

This set of precincts is susceptible to gerrymandering since pairing precincts 1 and 4 together
and 2, 3 together gives party A a 102 - 98 majority in the �rst district and a 103 - 97 majority
in the second.

Hint: Focus on the choice you need to make as you're building up a partial solution to this
problem (in this case, an assignment of precincts to districts). You will likely need to maintain
extra information about the partial solution.

3


