CS41 Lab 2: Inductions, Reductions, Analysis September 14, 2020

In typical labs this semester, you'll be working on a number of problems in groups of 3-4 students. You will not be handing in solutions; the primary purpose of these labs is to have a low-pressure space to discuss algorithm design. However, it will be common to have some overlap between lab exercises and homework sets.

Reductions. In computer science, a **reduction** is a way of solving one problem using another. Imagine having an algorithm for problem B, and using that algorithm as a subroutine in an algorithm that solves problem A. We say that "problem A reduces to problem B" or that we have a reduction from problem A to problem B. Reductions are a very deep algorithmic technique that can be used to make connections between problems that might initially look very very different.

Note: There is much more than ninety minutes of material on this lab. Consider it a successful lab if you can mostly make it through two problems. If you do not feel fully confident when it comes to proof using induction, I strongly encourage you to focus on the initial problem first. Otherwise, I encourage you to work on whichever problems look the most interesting!

- 1. **Induction.** Using induction, show that the following summations hold for all $n \geq 0$.
 - $\bullet \sum_{k=0}^{n} k = \frac{n(n+1)}{2} .$
 - $\bullet \sum_{k=0}^{n} 2^k = 2^{n+1} 1 .$
 - for all positive $c \neq 1$, $\sum_{k=0}^{n} c^k = \frac{c^{n+1} 1}{c 1}$.
- 2. Sorting to Half-Sorting. In the HALF-SORT problem, you're given an array of n integers and must return an array that has the first $\lceil n/2 \rceil$ integers in sorted order. For example, if your array is A = [5, 9, 1, 2, 6, 3], then a valid output of HALF-SORT(A) might be [1, 2, 3, 9, 5, 6] since 1, 2, 3 are the least elements of A.
 - Reduce the sorting problem to HALF-SORT. i.e., imagine you have an algorithm \mathcal{A} for HALF-SORT, and use it to design a sorting algorithm.
 - Now, suppose that your friend claims to have an algorithm for HALF-SORT that runs in 10n time in the worst case. What is the runtime of your sorting algorithm? Is 10n a reasonable running time for HALF-SORT?
- 3. **Driving Reductions**. Driving directions can often be much more complicated locally than regionally. In this problem, you and your lab partners will design algorithms to get from each of your home addresses.
 - First, tell your group what the closest large city is to your home.
 - Second, *individually* describe an algorithm for getting from your home to the closest large city.

- Independently, create an algorithm to get from your home to a lab partners' home by reducing to their local directions; i.e, by assuming you had an algorithm from their home to their closest large city.
- Finally, combine answers to get overall driving directions between your homes.
- 4. **Asymptotic analysis.** Assume you have functions f and g such that f(n) is O(g(n)). For each of the following statements, decide whether you think it is true or false and give a proof or counterexample.
 - (a) $\log_2(f(n))$ is $O(\log_2(g(n)))$.
 - (b) $2^{f(n)}$ is $O(2^{g(n)})$.
 - (c) $(f(n))^2$ is $O((g(n))^2)$.
 - (d) If g(n) is O(h(n)), then f(n) is O(h(n)).
 - (e) g(n) is $\Omega(f(n))$.