
CS41 Lab 8: Polynomial-Time Verifiers
This week, we’ve started to understand what makes some problems seemingly hard to compute. In
this lab, we’ll consider an easier problem of verifying that an algorithm’s answer is correct.

1. Reducing Vertex-Cover to Independent-Set. Recall from class the following problems

• Independent-Set takes an undirected graph G = (V,E) and integer k and returns yes
iff G contains an independent set of size at least k.

• Vertex-Cover takes an undirected graph G = (V,E) and integer k and returns yes
iff G contains a vertex cover of size at most k.

(a) Show that Independent-Set≤PVertex-Cover.

(b) Show that Vertex-Cover≤P Independent-Set.

2. Polynomial-time Verifiers. Call V an efficient verifier for a decision problem L if

(a) V is a polynomial-time algorithm that takes two inputs x and w.

(b) There is a polynomial function p such that for all strings x, x ∈ L if and only if there
exists w such that |w| ≤ p(|x|) and V (x,w) = yes.

w is usually called the witness or certificate. Think of w as some proof that x ∈ L. For V to
be a polynomial-time verifier, w must have size some polynomial of the input x. For example,
if x represents a graph with n vertices and m edges, the length of w could be n2 or m3 or
(n + m)100 but not 2n.

Give polynomial-time verifiers for the following problems which are not known to have efficient

(a) Independent-Set.

(b) Vertex-Cover.

(c) Three-Coloring. Given G = (V,E) return yes iff the vertices in G can be colored
using at most three colors such that each edge (u, v) ∈ E is bichromatic.

(d) Wedding-Planner. Recall in the Wedding planner problem, the input consists of a
list of n people to possibly invite to a wedding, along with m clauses, where each clause
specifies some criteria for whom to invite or not invite. Output yes iff there exists an
invitation list that satisfies all clauses.

Note: Assume that each clause is of the form e.g. x1 ∨ x̄2 ∨ · · · ∨ x̄k, where xi means to
invite person i, and x̄j means to not invite person xj .

(e) Factoring. Given numbers n, k written in binary, output yes iff n is divisible by d for
some 1 < d ≤ k.

(f) Not-Factoring. Given numbers n, k written in binary, output yes iff n is NOT
divisible by d for any 1 < d ≤ k.

Hint: The following problem is solvable in polynomial time.1

Primes: Given a number n written in binary, output yes iff n is a prime number.

1This actually wasn’t known until 2002, when Agrawal, Kayal, and Saxena created the AKS primality test. Kayal
and Saxena were undergraduates at IIT Kanpur at the time; Agrawal was their advisor.

1

