
CS41 Lab 4: Topsort and Greedy Graph
Algorithms

Many of the lab problems this week center around greedy algorithms for some graph problems,
and on data structures for implementing these algorithms. Most of you have seen one or more
of these problems before. The purpose of this lab is to (1) practice/develop skills to show that
greedy algorithms work optimally, and (2) to explore the connection between algorithms and data
structures.

1. Design an efficient algorithm to find the longest path in a directed acyclic graph.

2. Shortest Paths in Weighted Graphs.

• a directed graph G = (V,E).

• a start vertex s ∈ V .

• each edge e ∈ E has an edge length `e > 0.

Your goal is to output, for each v ∈ V , the length of the shortest s v path.

If you took CS35, you saw a solution to this problem called Dijkstra’s Algorithm. Dijkstra’s
Algorithm is a greedy algorithm which works by iteratively and greedily building a set of
“visited nodes” S. The nodes are selected in increasing path length.

Dijkstra(G, s, `)

1 S = {s}.
2 d[s] = 0.
3 while S 6= V
4 pick v ∈ V \ S to minimize mine=(u,v):u∈S d[u] + `e.

5 add v to S.
6 d[v] = d[u] + `e
7 Return d[. . .].

(a) Show that Dijkstra’s algorithm correctly returns the minimum length of paths from s to
other nodes.

(b) What is the running time of Dijkstra’s algorithm? For this answer, you may assume any
data structure that you’ve seen from CS35 or CS41, but the running time should be as
low as possible.

3. Minimum Spanning Tree. A tree is an undirected graph that is connected and acyclic.
Given a graph G = (V,E), a spanning tree for G is a graph G′ = (V, T ) such that T ⊆ E and
G′ is a spanning tree. (It is also common to refer to T as the spanning tree).

Suppose your graph has edge weights: {we : e ∈ E}. The cost of a spanning tree T equals∑
e∈T we. A minimum spanning tree is a spanning tree of minimal cost.

In the Minimum Spanning Tree (MST) problem, you are given a connected (undirected) graph
G = (V,E) with edge weights {we : e ∈ E}, and you must compute and output a minimum

1



spanning tree T for G. MST is another graph problem amenable to greedy algorithms. Two
common greedy MST algorithms are:

• Maintain a set of connected nodes S. Each iteration, choose the cheapest edge (u, v) that
has one endpoint in S and one endpoint in V \ S. This is known as Prim’s algorithm.

• Start with an empty set of edges T . Each iteration, add the cheapest edge from E that
would not create a cycle in T . This is known as Kruskal’s algorithm.

For this problem, take one of the greedy algorithms suggested above, or attempt to create
your own greedy algorithm for the minimum spanning tree problem.

(a) Write out your algorithm in pseudocode.

(b) Try to prove that your algorithm correctly returns a MST.

(c) What is the asymptotic running time of your algorithm? If you were to implement
it (in, say, C++) what data structures would you need? Would you need any addi-
tional data structures beyond structures you’ve seen from CS35? If so, try to design an
implementation for them.

4. You are helping some security analysts monitor a collection of networked computers, tracking
the spread of a virus. There are n computers in the system, call them C1, C2, . . . , Cn. You
are given a trace indicating the times at which pairs of computers communicated. A trace
consists of m triples (Ci, Cj , k) that indicate that Ci communicated with Cj at time tk. At
that time, the virus could have spread between Ci and Cj .

We assume that the trace holds the triples in sorted order by time. For simplicity, assume
that each pair of computers communicates at most once over the time of the trace. Also,
it is possible to have pairs (Cs, Cj , k) and (Ct, Cj , k): this would indicate that computer Cj

opened connections to both Cs and Ct at time tk, allowing the virus to spread any way among
the three machines.

Design and analyze an efficient algorithm that, given as input a collection of time-sorted trace
data and a virus query, answers the question “if the virus was introduced to Ci at time x,
could it spread to Cj at time y?” That is, is there a sequence of communications that could
have lead to the virus moving from Ci to Cj?

2


