CS41 Lab 3

The lab and homework this week focus on graph algorithms for undirected graphs. The following
definitions might be helpful /relevant.

e A path P on a graph G = (V, E) is a sequence of vertices P = (v1,vg,...,vx) such that
(Uz‘,vi+1) cEFforalll <i<k.

e A path is simple if all vertices are distinct.

e The length of a path P = (v1,...,v;) equals k — 1. (Think of the path length as the number
of edges needed to get from v; to vg on this path).

e A cycle is a sequence of vertices (v1,...,vg) such that vy, ..., vx_1 are all distinct and v, = v;.
A cycle is odd (even) if it contains an odd (even) number of edges.

This week, work on problem 1 first, and check your answers with me before moving on to
problems 2 or 3 (which you're encouraged to investigate in any order you wish)

1. Testing Bipartiteness A graph G = (V, E) is bipartite if V can be partitioned into
disjoint sets A, B such that any edge e € F has one endpoint in A and one endpoint in B.
Alternatively, a graph is bipartite if it is possible to color each vertex in the graph one of two
colors (say, green or blue) so that each edge is bichromatic—the endpoints of each edge have
different colors.

In this problem, you will develop and analyze an efficient algorithm to decide if a graph is
bipartite.

(a) Create a bipartite graph G; and a non-bipartite graph Gs.
(b) Which of the graphs on the whiteboard in front of class are bipartite?

(c) Design an efficent algorithm that takes a graph G = (V, F) as input and outputs YES iff
G is bipartite.

(d) Rigorously prove that your algorithm works. You should prove that your algorithm
outputs YES given any bipartite graph, and outputs NO given any graph that is non-
bipartite.

(e) What is the runtime of your algorithm? You may use any data structure from CS35 by
name, without needing to justify their runtimes.

2. Cycle Detection. Design and analyze an efficient algorithm for finding a cycle in a graph.
Your algorithm should take as input a graph G = (V, E') and report a cycle (or output NO if
no cycle exists). If there are multiple cycles in the graph, your algorithm should just output
one.

3. Testing Tripartiteness. Call a graph G = (V, E) tripartite if V' can be partitioned into
disjoint sets A, B, C such that for any edge (u,v) € E, the vertices u, v lie in different sets.
Design and analyze an algorithm to test a graph for tripartiteness.



