
CS41 Lab 11: Randomized and
Approximation Algorithms

Thursday, November 17

1. Finding the Median. Given a set S = {a1, . . . , an} of numbers, the median of S, denoted
med(S), is the k-th smallest element of S, where k = bn+1

2 c. In this problem, you will analyze
a randomized algorithm to output the median. Consider the following algorithm for finding
the median:

FindMedian(S)

1 Return Select(S, bn+1
2 c)

Select(S, k)

1 Choose pivot ai ∈ S
2 Initialize S−, S+ : ={}
3 for each j 6= i
4 if aj < ai add aj to S−

5 if aj > ai add ai to S+

6 if |S−| = k − 1 return ai
7 else if |S−| > k − 1

return Select(S−, k)
8 else

return Select(S+, k − (1 + |S−|))

• First, show that FindMedian always returns the median.

• Next, analyze the running time of FindMedian when the pivot element is chosen uni-
formly from S1. The following structure will help guide you. Say that the algorithm
is in phase j if there are between n(3/4)j and n(3/4)j+1 elements in the set S being
considered. So, for example, we are in phase 0 the first time Select is called.

Call an element ai ∈ S central to S if (i) at least |S|/4 of the elements of S are less than
ai and (ii) at least |S|/4 elements of S are greater than ai.

(a) Show that there are |S|/2 central elements.

(b) Show that if the pivot element is central, the phase ends i.e., the next recursive call
that gets made will be in a different phase.

(c) Give an upper bound on the expected number of recursive calls to Select before a
round ends.

(d) Give an upper bound on the running time of each Select call, not including recur-
sive calls.

(e) Give an upper bound on the number of phases that are run before FindMedian
terminates.

(f) Give an upper bound on the expected runtime of FindMedian when the pivot is
chosen uniformly.

1An element is chosen uniformly if each element is equally likely to be picked.

1

2. Three-Coloring Revisited. Recall the Three-Coloring problem: Given a graph G =
(V,E), output yes iff the vertices in G can be colored using only three colors such that the end-
points of any edge have different colors. In homework 8, you showed that Three-Coloring
is NP-Complete. In this lab, we’ll look at several approximation and randomized algorithms
for the optimization version of Three-Coloring.

Let Three-Color-OPT be the following problem. Given a graph G = (V,E) as input, color
the vertices in G using at most three colors in a way that maximizes the number of satisfied
edges, where an edge e = (u, v) is satisfied if u and v have different colors.

Hardness of Three-Color-OPT. Show that if there is a polynomial-time algorithm for
Three-Color-OPT then P = NP.

3. Approximation Algorithm. Give a deterministic, polynomial-time (3/2)-approximation
algorithm for Three-Color-OPT. Your algorithm must satisfy at least 2c∗/3 edges, where
for an arbitrary input G = (V,E), c∗ denotes the maximum number of satisfiable edges.

4. Randomized Algorithms. Give randomized algorithms for Three-Color-OPT with the
following behavior:

(a) An algorithm with expected polynomial runtime that always outputs a three-coloring
that satisfies at least 2c∗/3 edges.

(b) An algorithm that runs in worst-case (i.e., not expected) polynomial time and produces
a three-coloring such that the expected number of satisfied edges is at least 2c∗/3.

(c) An algorithm that runs in worst-case polynomial time, and with probability at least 99%
outputs a three-coloring which satisfies at least 2c∗/3 edges. What is the running time
of your algorithm? The following inequality might be helpful: 1−x ≤ e−x for any x > 0.

2

