
CS41: Algorithms In Class, September 6

Lab 1

Lecturer: Joshua Brody

Below is an example of a solid solution to the cowpath problem, written in latex. Text written
〈in this font〉 are instructions to you—they tell you what parts are important/optional/etc. Of
course, you do not have to latex your solutions this way (or at all). However, if you’re not sure
what to do, this is a good structure to have.

1. The Cowpath Problem. You and a friend are to meet on the Appalachian Trail (AT).
Unfortunately, you know very little about the AT. You are now on the AT, and you know
your friend waits for you somewhere on the AT, but you do not know where. Design and
analyze an algorithm to reach your friend. Suppose your friend is m miles away from you
(but you don’t know m, nor do you know in which direction your friend is) How far do you
travel?

Solution.

〈Put what you think is the main challenge of the problem here.〉
We have no way of knowing where our friend is, except by running into him. The challenge
is that we don’t know whether our friend is north or south, and if he is currently close to
us, we don’t want to walk all the way in the wrong direction. On the other hand, if we keep
walking back and forth along the trail, we cover the same ground over and over. When m is
large, we end up walking a long way before meeting our friend.

Idea:

〈In this section, you should write one or two sentences about your high-level approach. This
part is optional but can help the grader understand what you’re trying to do.〉
Iteratively walk north and south along the trail, doubling the distance you walk each iteration.
This way, you cover distance in each direction, but you don’t travel distance you’ve covered
before too much.

Algorithm:

〈put pseudocode here.〉

1



Cowpath

1 arrived = false
2 k = 1
3 while !arrived and !South-end and !North-end
4 // break out of loop as soon as terminal condition met
5 walk(k,north) // walk k miles north
6 walk(2k,south)
7 walk(k, north)
8 k = 2k // double length for next iteration
9 if !arrived

10 if SouthEnd
11 walk north until arrived
12 else walk south until arrived
13 else // We have arrived and are happy.

〈The walk procedure is thorough but probably overkill. Just stating that you break out of the
while loop after reaching friend or hitting the end of the trail should be enough.〉

walk(k, d)

1 if k == 0
2 return !stop
3 walk one mile in direction d
4 if you meet your friend
5 arrived = true
6 return stop
7 if you reach north end of trail
8 North-end = true
9 return stop

10 if you reach south end of trail
11 South-end = true
12 return stop
13 return walk(k-1,d)

Analysis. 〈In this part, you should (a) prove correctness of the algorithm and (b) analyze
the efficiency. For the cowpath problem, the proof of correctness is basically trivial. For other
problems, the proof-of-correctness is the hard part, and the efficiency analysis is easy〉
Claim 1. The algorithm Cowpath eventually halts when we meet our friend.

Proof. We clearly keep walking longer and longer distances, eventually covering the entire
trail until we arrive at our friend.

Theorem 1. If our friend is m miles away, then we walk O(m) miles during the execution
of cowpath.

2



Proof. First, consider the case where we arrive before ever reaching the end of the trail.
During the ith full iteration of the while loop, we travel 4k miles, where k = 2i. We execute
the while loop until k ≥ m. In the final iteration, we travel (a) m miles if our friend waits
to the north of us, and (b) (2k + m) miles if our friend waits to the south. Let t := dlogme.
Then, the total distance traveled is at most

2 · 2t + m +

t−1∑
i=1

4(2i) ≤ 2 · 21+logm + m + 4

t−1∑
i=1

2i

≤ 5m + 4(2t − 1)

≤ 5m + 4 · 2m
< 13m = O(m)

Next, consider the case where we reach the southern terminus of the trail before arriving. Let
` be the distance between the southern end and the starting point, and let t be the smallest
integer such that 2t ≥ `. Fix k := 2t. Note that k < m, since otherwise we would reach our
friend before hitting the southern end of the trail. We also know that ` ≤ k since otherwise
we would continue to iterate.

We travel 4
∑t−1

i=1 2i miles during full iterations of the while loop. In the last iteration (when
we hit the southern end of the trail), we travel 2k+` miles. In addition, we travel an additional
` + m miles before arriving at our friend. In total, we travel

(2k + `) + (` + m) + 4
t−1∑
i=1

2i ≤ 2k + 2` + m + 4 · 2t

≤ 5m + 4k

= 9m = O(m) .

The case where we hit the northen end of the trail before arriving at our friend is similar. In
all cases, we travel O(m) miles. Thus, the proof is complete.

3


