
Lab 4: Algorithm Analysis

Due: Tuesday, February 18 at 4PM; NO LATE DAYS

Overview

In this lab, you will answer several math and algorithm questions and complete the mystery function exer-
cise. You will submit a hard copy of this lab. You may type your solution, if you wish. This is an individual
lab. You can retrieve requisite code from update35 for the mystery function portion of the lab.

Deliverables

Your submission should be concise and easy to read. You should answer all 4 short answer questions, the
run times of all 6 functions, written support of the mapping to mystery functions, and at-least two print out
of graphs to support that argument.

Submission

You will submit this lab in hard copy to my mail slot outside my office, Science 270. Sorry, no late labs will
be accepted for this lab since the quiz study session Tuesday night will go over answers.

1



Short Answer Questions

1. Justify the following Big-O for the given functions:

(a) 5n4 − 2n3 + 10 is O(n4)

(b) 1
2n− log(n) is O(n)

2. Prove the following claim by induction:

(a) ∀n ≥ 1,
n∑

i=1
i2 = n(n+1)(2n+1)

6

3. Using loop-invariants/induction, prove that the isSorted function from class correctly verifies that
an array A is sorted in descending order. HINT: Formally, you are trying to prove S: A is sorted in
descending order.

function ISSORTED(A, size)
for i← 0 . . . size− 2 do

if A[i] < A[i+ 1] then
return False

end if
end for
return True

end function

4. (C-4.23 from Goodrich et. al) An evil king has n bottles of wine, and a spy has just poisoned one of
them. Unfortunately, the king doesn’t know which bottle it is. The poison is very deadly; just one
drop diluted even a billion to one will still kill. Even so, it takes a full month for the poison to take
effect. Design a scheme for determining exactly which one of the wine bottles was poisoned in just
one month’s time while utilizing O(log n) taste testers. Make a short argument for what you think
the run time of your technique is, even if you cannot come up with an optimal solution. Please, keep
solution to a paragraph or less.

2



Mystery Functions

In this part of the lab, you will first analyze six simple loop structures and determine their run time per-
formance in terms of Big-O. Then, using the provided program function timer, you will graph the
empirical run times of these functions.

Functions

To begin, identify the Big-O run time for each of the following 6 functions. You do not need to provide
a justification, simply write the function name followed by the Big-O on your solution. Use the strictest
Big-O (i.e., the closest upper bound) and ignore all but the most significant term (e.g. Ex 7: O(log n)).

Ex1(n)
for(i=0; i<n; i++){
a=i;

}

Ex2(n)
for(i=0; i<n; i+=2){
a=i;

}

Ex3(n)
for(i=0; i<n*n; i++){
a=i;

}

Ex4(n)
for(i=0; i<n; i++){
for(j=0; j<=i; j++){

a=i;
}

}

Ex5(n)
for(i=0; i<n*n; i++){
for(j=0; j<=i; j++){

a=i;
}

}

Ex6(n)
k=1;
for(i=0; i<n; i++){
for(j=0; j<=k; j++){

a=j;
}
k=k*2;

}

Decoding functions using function timer

Each of the above functions has implemented and packaged in the executable function timer, which
has placed in your lab directory for this week. This program will provide an empirical run-time for each
method and plots them automatically using the unix tool gnuplot.

To begin, here is the usage (this is an abbreviated version; obtain more details on the command line):

3



$ ./function_timer -h

OPTIONS:
-h print this help screen
-n min_n set the min value for n (dflt: 1)
-m max_n set the max value for n (dflt: 10)
-[1-6] Turn on mystery function number, e.g.

to run function 2 and 3: function_timer -2 -3
-s out.png Save the graph to a file out.png instead of graphing live

The key choices you have to make are:

• Which function(s) to plot. To plot func1, add -1 as a command line argument. To plot func2 vs
func3, add -2 -3, etc.

• The minimum and maximum values for n. You should recall from lecture that n may have to be very
large for fast algorithms and small for slow ones. One size definitely does not fit all.

• Whether to save to file or immediately load plot. You’ll want to save once you get a result you like by
using the -s option.

For example, you can compare functions 1 and 4 from n = 10 . . . 100 and view the result using gnuplot:

$ ./function_timer -1 -4 -n 10 -m 100 | gnuplot

Note that you must ‘pipe’ the output of the program to the plotting program, gnuplot. This is done
using the vertical bar |, which simply sends the output from function timer straight to gnuplot.
To compare functions 1 and 4 from n = 10 . . . 100 and save the output to a file named out.png, do the
following:

$ ./function_timer -1 -4 -n 10 -m 100 -s out.png | gnuplot

Now here is the twist: I’ve jumbled up the ordering of functions in function timer. Your job
is to figure out the mapping from the functions in function timer (e.g., -1, -2, ...) to their

4



corresponding number above (e.g., Ex1, Ex2,...). In addition to determining the mapping between
mystery functions and the functions above, you must support your argument in writing for each and
provide a graph to support two of your mappings in your hard-copy submission.

5


