
CleanURL: A Privacy Aware Link Shortener

Daniel Kim, Kevin Su, Andrew G. West, and Adam J. Aviv
Department of Computer and Information Science
University of Pennsylvania – Philadelphia, PA, USA

{dki, kevinsu, westand, aviv}@seas.upenn.edu

ABSTRACT
When URLs containing application parameters are posted in
public settings privacy can be compromised if the those argu-
ments contain personal or tracking data. To this end we de-
scribe a privacy aware link shortening service that attempts
to strip sensitive and non-essential parameters based on dif-
ference algorithms and human feedback. Our implementa-
tion, CleanURL, allows users to validate our automated logic
and provides them with intuition about how these otherwise
opaque arguments function. Finally, we apply CleanURL
over a large Twitter URL corpus to measure the prevalence
of such privacy leaks and further motivate our tool.

1. INTRODUCTION
Uniform resource locators (URLs) often contain function-

ality that allows data to be passed to web applications. For
example, consider the following URL:

http://www.example.com?key1=val1&key2=val2

There, the key-value pairs which proceed the question mark
are collectively called the query string. Such parameters are
common in practice for purposes of referrer tracking, user
identification, and storage of session data.

Privacy concerns can arise when a user posts a URL con-
taining a query string in a public forum (e.g., a social net-
work or micro-blogging platform) as parameters might con-
tain/encode sensitive information. Moreover, since many
posting environments are profile driven, a history of contri-
butions could reveal considerable private user data.

When a parameter is interpreted by the server-side appli-
cation it may or may not affect how the browser visually
renders the page. Thus, privacy leaks occurring as the re-
sult of non-rendered parameters are avoidable given their
purpose is orthogonal to that of link sharing, which is to
share content. Certain users may be cognizant of this fact,
but manual removal and inspection is an arduous task. More
likely, most users are unaware of the threat. Thus, we aim to
provide an intuitive and efficient means by which to visual-
ize parameter output, educate about the potential dangers,
and produce more secure links. This is realized as a privacy-
aware link shortening service (CleanURL).

We begin by using visual and textual comparisons (i.e.,
diff algorithms) to determine whether or not a parameter’s

Copyright is held by the author/owner. Permission to make digital or hard
copies of this work for personal or classroom use is granted without fee.

inclusion affects rendering. Dynamic webpage content (e.g.,
advertisements) can blur such distinctions. Thus, we create
an interface that allows end-users to visually confirm/correct
our generated rankings regarding URL reduction (Sec. 2).

Over time, this feedback can be aggregated to refine our
approach and increase usability by reducing service over-
head. Moreover, we use our technique to conduct an un-
supervised measurement study over a corpus of 1.6 million
Twitter URLs. We found that half of the URLs have argu-
ments, and of those, 63% contain non-rendered arguments;
a cause for privacy concern (Sec. 3).

2. LINK SHORTENING SERVICE
In describing our link shortener, we begin by using diff

algorithms to estimate parameter necessity (Sec. 2.1) before
integrating these into a user-facing interface (Sec. 2.2).

2.1 Estimating Argument Necessity
Given two URLS (i.e., one inclusive and another exclu-

sive of some parameter) it is our goal to determine whether
that parameter is a rendered one (i.e., induces non-random
content change). We consider two approaches:

• Visual diff: The two URLs are rendered as down-
scaled bitmaps with a standardized viewport and the
Hamming distance between the images is calculated.
• HTML tag diff: The HTML source of the two URLs

is parsed to remove visible text content. Over the re-
maining content (i.e., HTML tags) a standard textual
diff is applied (based on longest common subsequence)
and the size of the delta/patch is computed.

While visual difference is perhaps the most intuitive com-
parison method, one must also accommodate dynamic con-
tent. Even when an identical URL is fetched multiple times
in succession the pages may render differently. Often, this
comes in the form of different advertisement images whose
prominent sizing can skew visual diff calculation.

The HTML tag diff provides an additional perspective.
While visually different when rendered, advertisement place-
ment code is generally quite static in nature (perhaps only
changing the image path, if anything).

Both diff algorithms return real-valued measures that can
be used jointly to determine the relevance of a URL argu-
ment. The values are aggregated and compared against a
threshold to force a binary decision of whether the versions
are sufficiently similar. This threshold should be selected
such that it is tolerant of dynamic content (see Sec. 3.1).

1



Your cleaned URL: [[base_url]]/R09XVIUh3

www.example.com?key1=val1&key2=val2&key3=val3

Choose the left-most version that appears as you expect.
Our best guess has been selected by default.2

http://www.example.com?key1=val1...

1

Figure 1: Simplified screenshots detailing end-user
interaction with the CleanURL interface.

2.2 CleanURL User Interface
A typical session with the link shortener is visually de-

picted in Fig. 1. A user begins by entering a URL in a
simple form field and pressing the “submit” button. This
sets off the computational phase whereby all combinations
of parameters from the query URL are enumerated. For each
parameter combination the webpage source (i.e., HTML) is
downloaded, rendered as a small screenshot, and compared
against the original URL via our diff functions. The diff
output is used to sort combinations based on: (1) their abil-
ity to faithfully render the original URL, and (2) internal to
that, the number of query string parameters.

This ordering is the basis by which screenshots are pre-
sented in a “shuffle” selector to the end-user (see Fig. 1).
The “optimal” version is selected by default: the combina-
tion with the minimal number of parameters that still ex-
ceeds the similarity threshold. Our design goal was to visu-
alize the impact of URL manipulation to achieve end-user
awareness while still maintaining a clean, simple, and us-
able interface. The user is free to browse/shuffle through all
presented combinations and a shortened URL (per standard
hashing) is returned once a selection is made.

This act of human selection is essentially an evaluation of
our automated technique. However, we could also imagine
that humans might go a step further in choosing to elimi-
nate parameters that do affect page rendering (e.g., but are
orthogonal to the page’s main content). Such feedback is
put to use to use shortly (Sec. 3).

CleanURL’s implementation is coded in Django, a Python
web application framework. Screenshot generation uses the
QtWebKit engine supported by a VNC server.

3. UTILIZING FEEDBACK LOOPS
Feedback from the interface allows refinement of auto-

mated techniques to minimize users’ time investment and
heighten trust (Sec. 3.1). Confident in our system’s abil-
ities, the approach can be employed autonomously over a
large corpus of URLs to estimate the prevalence and prop-
erties of privacy leaks “in the wild” (Sec. 3.2).

KEY NAME PER%
utm_source 15.5%
utm_medium 14.6%
utm_feed, feed, f 12.4%
ref, _r 5.2%
utm_campaign, campaign 4.9%

Table 1: Most commonly stripped parameter keys.
Percentage is out of total of all stripped instances.

N 0 1 2 3 . . . 8
CDF% 100% 52.5% 5.5% 1.9% . . . 0.03%

Table 2: Percentage of URLs having ≥ N key-value
pairs in the query string.

3.1 Usability Improvements
Human feedback establishes ground truth regarding “op-

timal” parameter selection. With these labels, the two diff
values (Sec. 2.1) could be fed as features to a supervised
machining technique to improve threshold selection. Given
that CleanURL has not been deployed to the public we are
yet to perform such optimization.

However, we believe the accuracy of CleanURL’s auto-
mated logic is paramount in achieving service adoption given
that human selection phase is the only overhead in using
CleanURL relative to a traditional link shortener.

A popular system would also generate sufficient feedback
to reason about parameter keys in a lexical fashion, e.g., that
“userid=” tags are typically stripped from submitted URLs.
In this vein we have manually authored a static list of keys
that tend to reveal private data (e.g., username, location,
etc.). If one of these keys cannot be safely stripped the
user is warned, prompting manual inspection and possible
abandonment (i.e., the link is fundamentally insecure).

3.2 Motivational Measurement Study
We now use CleanURL’s logic to demonstrate the real-

world presence of privacy sensitive URLs. We manually set
selection thresholds using a combination of our expertise,
the diff score distribution, and a small number of inspections
(i.e., there is some margin of error).

We analyze a corpus consisting of 1.7 million URLs that
appeared in Twitter posts. Tab. 2 shows the number of key-
value pairs in query strings. We are fortunate that high pair
quantities are rare as their combinatorial explosion would
create interface latency. The figure also shows 52% of URLs
(884,000 in total) have at least one parameter and these
formed our working set moving forward.

Running these through the CleanURL system we found
that 63% of URLs have at least one parameter stripped af-
ter inspection (i.e., original URL vs. CleanURL’s “optimal”
prediction). Clearly, the presence of non-rendered parame-
ters is pervasive. We also inspect the key names which were
removed, with Tab. 1 showing the five most common (group-
ing those of similar name). Notable is the fact that all five
are used for tracking purposes measuring referring websites,
ad campaign effectiveness, traffic analytics, etc. Thus, not
only can the parameters be safely removed, but it should be
apparent their removal would positively impact the privacy
of the CleanURL user.

2


