
(Don’t) Hold the Phone: Accelerometer Sensor-Based
Side Channels on Smartphones

Anonymous Submission

Abstract
Modern smartphones are equipped with a plethora of

sensors that enable a wide range of interactions with
the device; however, these sensors can measure much
more than the user’s intentions within a single applica-
tion. In this paper, we examine the implications of one
sensor, the accelerometer, and its use as a side channel.
We show that the accelerometer sensor is a sufficiently
high-bandwidth side channel that can be used to learn
(or greatly reduce the search space for) secure or confi-
dential user input, such as the Android password pattern
and PINs. We apply off-the-shelf machine learning tech-
niques to accelerometer data collected while entering a
set of 50 password patterns and 50 PINs and show that a
pattern can be identified with an accuracy as high as 60%,
and a PIN can be identified with an accuracy as high as
49%. There is also surprising consistency across users
and devices, and an attacker can train a model based on
one user’s input to attack another user. Our results sug-
gest that precautions should be taken to restrict access to
sensor data during security-sensitive operations.

1 Introduction
Modern smartphones ship with a increasing range of sen-
sors to measure the phone’s environment. These sensors
are used for a wide variety of tasks; for example, the
gyroscopic and accelerometer sensor can measure the
movement of the phone in space and are often used in
gaming applications. Applications are generally granted
access to these sensors without much concern; however,
certain sensors, particularly the accelerometer, may be
able to measure much more than just the user’s intention
within a single application.

Consider an application that runs in the background
and has access to the accelerometer sensor, the key ques-
tion is: What can the background application learn

about user input to the foreground application via the
accelerometer readings? In this paper, we answer this
question and show that the accelerometer is sufficiently
sensitive to learn private and confidential user input, and
that the accelerometer is a surprisingly effective side
channel that can leak information with remarkable fi-
delity.

The accelerometer sensor’s capability as a side chan-
nel is a direct result of the new computer interaction layer
promoted by smartphones. As compared to traditional
computing platforms, smartphones are tactile, hand-held
devices, and users provide input by physically touching
and gesturing on the touchscreen. These actions implic-
itly shift and adjust the device in measurable ways that
can be recorded using the on-board accelerometer sen-
sor. Our results show that these slight adjustments and
movements can correlate with the precise input provided,
or reduce the search space necessary to determine the in-
put.

Particularly, we focus on two secure input types that
are representative of touchscreen input: four-digit PINs
(point touching) and the Android password pattern (ges-
turing). In our experiments, using off-the-shell machine
learning techniques, we show that accelerometer mea-
surements can be used to identify the PIN or pattern that
was entered. Using a set of 50 PINs and 50 patterns, we
collected 3,600 samples and can identify the precise PIN
or pattern entered with an accuracy of 60% for patterns
and 49% for PINs. We also find that there is relative
consistency in accelerometer readings across users and
smartphone devices, and accelerometer measurements
from one user can be used to identify input from another
user. Further, we show that accelerometer measurements
can be used to classify individual swipe motions or touch
events – e.g., swiping left or right, or touching the digit 9
– and that these smaller classifications can be combined

1

to form larger classifications about potentially unseen in-
put not used in training.

These results suggest that the accelerometer sensor is
highly sensitive, much more so than previously thought,
and that a wide variety of user input (touching and gestur-
ing) is susceptible to this side channel. This is supported
by previous results on using on-board sensors to learn
single touch events (touchlogger [4]) or short sequences
of touch input input (ACCessory [15]). The combination
of this work and the previous side channels, now con-
stitutes the vast majority of user input, i.e., swiping and
touching, and thus the accelerometer sensor could poten-
tially reveal nearly all user input. The security model
for applications with access to sensitive sensors, like the
accelerometer, should be carefully reconsidered in light
of these and previous results, and we propose a new ap-
proach to smartphone security that can greatly reduce the
threat of a side channel based on sensor readings.

To summarize, the contributions of this paper are as
follows:

• We show that the accelerometer sensor can be em-
ployed as a high-bandwidth side channel that can
leak a large amount of information, more than previ-
ously suggested, and that the accelerometer sensor
can be used to greatly reduce the search space for
secure input, such as PINs and password patterns.

• We show that accelerometer measurements are rel-
atively consistent across users and smartphone de-
vices, and that measurements from one phone or
user can be used to identify input from another user
or device.

• We propose architectural changes to the smartphone
security models that can mitigate sensor based side
channels.

2 Attack Scenario
In this paper, we consider an attacker who wishes to learn
the secure input of smartphone users via an accelerom-
eter side channel. An attacker may gain access to ac-
celerometer data in a wide variety of ways – e.g., the
attacker finds a phone where an application has written
accelerometer data to the sd-card. We consider a more
active attacker who distributes a malicious smartphone
application that can run in the background, has access
to the accelerometer, and can communicate over the net-
work. As an example of the kinds of input an attacker
may be able to learn, we focus on the information that
is leaked by two common input types, entering a PIN or

Android password pattern that is used to lock the smart-
phone.

To this end, the malicious application is aware when
the phone initially wakes and, thus, the smartphone
will prompt a user for a PIN or password pattern while
the malicious application is running in the background.
The application then activates the accelerometer sensor,
recording measurements for a short time period. We
found that it takes 1.1 seconds to enter a pattern and 1.7
seconds to enter a PIN, on average, so the accelerometer
does not need to be active for very long. The accelerom-
eter measurements are eventually sent over the network
to be analyzed offline.

The attacker’s goal at this point is to develop a method
for comparing the captured accelerometer data to a cor-
pus of labeled accelerometer data1. That is, the attacker
has at his/her disposal accelerometer data that he/she
knows was collected when a particular PIN or pattern
is entered. The problem of identifying the PIN or pat-
tern that was entered is now reduced to a classic machine
learning problem: Given previously label input, what is
the label of the unknown input? In this scenario, the label
is the PIN or pattern of the victim.

We consider two scenarios in our experiments for the
attackers capabilities to make this comparison to the cor-
pus at his/her disposal. In the first scenario, we assume
that the attacker has a large corpus, and samples of the
PIN or pattern he/she is trying to learn can be found in
the corpus. In the second scenario, we assume that the at-
tacker does not have samples in the corpus, or not enough
to generate a strong model.

In our experiments, we model these two scenarios by
first considering a sample set of 50 patterns and 50 PINs.
Here the goal of the experiment is to measure how accu-
rately a pattern and PIN can be identified based on pre-
viously seen input. In the second scenario, where the
attacker does not have sufficient labeled data, the goal
of the experiment is to measure the accuracy of a se-
quence predictor that tries to identify a pattern by mak-
ing a sequence of smaller predictions (e.g., a single swipe
or digit press). We present more details of our machine
learning setup in Section 5.

Of course, an important question is: What can an at-
tacker do with the information learned? Clearly, if the
attacker has learned a user’s password pattern, it is only
useful if the attacker gains physical access to the victim’s
phone at some later point because the Android pass-
word pattern is not a widely used security mechanism.

1The attacker could build such a corpus by distributing an appli-
cation that requires users to enter patterns for other purposes, such
as [7, 10, 16].

2

Figure 1: Password Pattern Instructions Provided on An-
droid Smarpthones

Granted, this is a reasonable attack scenario. However,
learning a user’s smartphone unlock PIN may be appli-
cable in other settings if the user reuses his/her PIN, such
as an ATM pin or in online banking application.

More broadly, we focus on PINs and Android pass-
word patterns because they represent a larger set of user
input on touchscreens that is composed of point touch-
ing and gesturing. Demonstrating an accelerometer side
channel against these input types is an example of a
broader family of sensitive touchscreen inputs that may
be susceptible to this side channel.

3 Background

Before proceeding, we first provide background on the
secure input types used in our experiments. Addition-
ally, we provide background on the accelerometer sensor
and the measurements it takes. In the following sections,
we show how to use the accelerometer measurements to
learn the PIN or pattern entered.

PINs Both Apple iOS and Android based smartphones
support PINs as a screen lock mechanism. iOS’es pri-
mary screen lock interface uses a PIN, but Android pro-
vides two other options: a graphical password pattern
(see below) or a pass-phrase consisting of both numbers
and letters. A PIN consists of a sequence of four dig-
its, 0-9, and digits may repeat. Thus, there is a total
of 10,000 possible PINs, and iOS will lock down the
phone after 10 failed attempts, while Android allows for
20 failed attempts. In addition to securing the device,
PINs are also used in banking applications, particularly
Google Wallet [8] requires a user to enter a PIN to con-
firm transactions.

Password Pattern The Android password pattern was
the primary phone lock interface on Android smart-
phones prior to the release of Android 2.2. In current
versions of Android, users have the option to lock their

phone using a four-digit PIN or a pass-phrase in addition
to the password pattern. In recent user studies, despite
known security issues with the password pattern [2], the
vast majority of users who lock their phone, do so using
the password pattern [12].

The Android password pattern is a graphical password
scheme that requires users to enter a sequence of swipes
that connect contact points in a three-by-three grid. The
user must maintain contact with the screen while entering
a pattern, and a user’s pattern must minimally contacts
four points (see Figure 1). Android allows for twenty
failed pattern entry attempts before locking the device
permanently.

There exists a number of restrictions on allowable pat-
terns; particularly, if their exists an intermediate point
not previously contacted between two points. The user
implicitly includes these intermediate points regardless
if the point is physically touched while entering a pat-
tern. This restriction leads to a password set of just
389,112 possible patterns, much less than one might ex-
pect. Of course, with any password scheme, the actually
set of usable passwords is likely much less because peo-
ple choose passwords of convenience given that it must
be entered over and over again. In our experience, as we
will discuss in Section 4, a large portion of password pat-
terns are simply to complicated or difficult to enter and
are likely not part of the usable set.

Accelerometer Sensor The accelerometer sensor
measures linear movements in three dimensions, side-to-
side, forward-and-back, and up-and-down (labeled x, y,
and z respectively in Figure 2). Upon each reading, a
data element is provided that contains the acceleration
reading in all three directions, and the units are in m/s2.

Accelerometers have been previously studied in the
computer science community, and researchers have
shown that accelerometer readings can provide a rich
source of information about the actions of individu-
als [3, 11, 14, 17]. The accelerometer sensor is used in
many applications, notably in Bump [20], an application
to quickly exchange contact information between smart-
phones by “bumping” them together. More light weight
applications also make use of the accelerometer, for ex-
ample applications that simulate the noises of a “light
saber” will use the accelerometer to determine when to
play a sound effect [9].

4 Data Collection

The hypothesis that we are testing in this paper is: A
background application with access to the accelerometer
can learn about input to a foreground application. To

3

Figure 2: Accelerometer Axis of Measurement
(Source [6])

test this hypothesis, we focus on two types of input that
are representative of broad touchscreen input, Android
password patterns and PINs, and to model the attacker’s
perspective, we developed two applications that collect
accelerometer data while users enter PINs and password
patterns. A visual of the applications can be found in
Figure 3.

Both applications present the user with secure input to
enter and record accelerometer readings while the user
performs the assigned task. The accelerometer on the
smartphone has different measurement frequencies, and
we chose the highest frequency readings offered in the
Android API. In practice, the actual rate of readings var-
ied between 76 hz and 24 hz. This is because the ac-
celerometer data is a service request, and the underlying
Android OS decides when and how frequently to report
acceleration changes.

In total we collected 3,600 samples of users entering in
patterns and PINs selected from a set of 50 patterns and
50 PINs. A summary of the data collected can be found
in Table 1. Although a sample size of 50 patterns or PINs
might seem relatively small compared with the total pat-
tern and PIN password space, the variance we measured
across our cross validation runs is only 1.3% for patterns
and 1.2% for PINs. This suggests that our sample size is
sufficient to consistently learn effective classifiers.

We asked all test users to enter patterns and PINs in
a consistent posture. Specifically, we asked users to sit
at a table, and hold the phone in their right hand with
their right elbow on the table. The PIN or pattern is
entered with the thumb on the right hand without as-
sistance from the left hand. All experiments were con-
ducted with the phone in the vertical orientation, which
differs from previous smartphone side-channel experi-
ments in [4, 15]. We used three different Android phones
in our experiment, HTC Nexus 1 (N1), HTC Droid In-
credible 2 (Incr2), and HTC G2 (G2).

It is important to note that the patterns and PINs used

Figure 3: PIN and Pattern Entry Applications

in the experiment are not the test user’s real patterns or
PINs, and that real-world users will likely be very well
practiced at entering in their own PIN or pattern. This
familiarity could affect the way (e.g., the way the phone
moves in space) a user enters a pattern or PIN. We do not
model this in our experiments (indeed, performing such
an experiment on users actual secure input could be seen
as unethical). However, our test users, by the end of data
collection, have entered each PIN and pattern 12 times,
providing considerable practice.

PIN Data We selected 50 PINs at random to form the
attacker’s training corpus, and all three test users enter
the same set of 50 PINs a total of 12 times. If a user
enters one of the PINs incorrectly, the application con-
tinues to prompt the PIN until it is entered correctly. In
our analysis, we only consider accelerometer readings
from correctly entered PINs and patterns. In addition to
recording accelerometer readings, we also log the tim-
ing of the touch events to ensure that the accelerometer
data matched the timing of PIN entry. We considered all
accelerometer readings that occurred within 50 ms of en-
tering the first digit and 50 ms after entering the last digit.
A complete list of the PINs used in the experiments can
be found in the Appendix.

Pattern Data We conducted two types of data collec-
tion for pattern entry. First, we collected information
about individual swipes. The user is presented with a
series of swipe gestures that connect all possible pairs of
contact points. With 9 contact points, this data set con-
sists of 72 unique swipes, and we conducted 10 runs with
a single user.

The second data collection requires users to enter 50
different patterns a total of 12 distinct times. Initially,
we chose patterns at random, but we quickly discovered
that the vast majority of the patterns selected were in-
credibly hard to enter. They were convoluted and overly
complicated, and our users reported that it took many it-
erations to enter them correctly. As a result, we wished

4

Users Patterns/PINs Runs Phones
Swipes 1 72 10 Incr2
Patterns 3 50 12 N1, Incr2
PINs 3 50 12 G2, Incr2

Table 1: Collected Data: Users per experiment, size of
test set, runs per user, and which phones were used

Pattern Length 4 5 6 7 8 9
Distribution 2 5 14 18 8 3

Table 2: Length Distribution of 50 Pattern Test Set

to use a set of reasonable and representative password
patterns that our test users can reliably enter on their first
attempt. We developed two simple criteria to select pat-
terns at random that meet this requirement.

The first criteria limits the number of cross overs, that
is, it limits the number of swipe segments that cross (or
double back) over previous swipe segments (e.g., the pat-
tern in Figure 3 contains a single cross over). The mo-
tivation for this criteria is that users would likely move
in consistent directions. For example, we anticipate that
users would generally select dots starting in one region
and move to another region without doubling back too
many times. The second criteria restricts contact points
that are untouched: It requires that untouched contact
points be next to other untouched contact points. Similar
to the cross over criteria, this restriction again assumes
that users will likely connect points in nearby regions,
e.g., just in the top half of the grid.

We do not argue that real world users apply these cri-
teria while selecting their patterns, but in our experience,
these criteria do provide patterns that our test users found
much more reasonable to enter. Studying user selection
criteria for password patterns is beyond the scope of this
paper, and we are unaware of any such study. It should be
noted that if this information were to become available,
it could be easily incorporated into the machine learning
classifiers used in this study and would further reduce the
search space, yielding even better results than presented
herein.

The distribution of pattern length for the test set of 50
patterns is presented in Table 2. A complete list of the 50
patterns can be found in the Appendix.

5 Data Analysis and ML Techniques
In this section, we present our analysis of the collected
accelerometer data as well as present our machine learn-
ing techniques for classifying data. The accelerome-
ter measurements for both PINs and patterns consist of

a sequence of readings in each linear direction, plus a
time stamp: M = {(xi,yi,zi, tsi)}. In addition to the ac-
celerometer measurements, we also record the timing of
touch events. A touch event for a PIN is when the user
presses a digit, and a touch event for a pattern is when a
user swipes across a contact point. The touch events are
used to properly align the accelerometer data.

Malicious applications will not have direct access to
touch events from other applications – if it did, then there
would be no need to employ side channels. A malicious
application must also determine when secure input be-
gins and how to segment the accelerometer readings. Al-
gorithmically learning touch events from raw accelerom-
eter data is beyond the scope of this study; however, other
machine learning techniques (or information form other
side channels) could be employed to solve this problem.

Before proceedings with classification analysis, it is
important to confirm that accelerometer measurements
differ across different patterns and PINs. In Figures 4
and 5 we present four sample accelerometer data for
PINs and patterns collected from a single user. There are
noticeable differences in the readings between PINs and
patterns; particularly, patterns produce smoother curves
while PINs have more noise. This is to be expected be-
cause striking the smartphone screen causes more move-
ment than gesturing.

Observe in Figures 4 and 5 is that there are strong vi-
sual differences between the two PINs and between the
two patterns. For example, the y and z curves in Figure 5
display very different shapes near the 1000 ms mark. The
graph on the right in Figure 5 shows a consistent flat pe-
riod as the user transitions from striking a 2 to striking
the 6 in the PIN 6626. During the same time period,
the graph on the left has no such flat period. It is pre-
cisely these properties that an attacker can use to differ-
entiate between input entered on the smartphone. In the
rest of this section, we describe the procedure for extract-
ing features from the accelerometer data, and following,
we discuss the machine learning classifiers and experi-
mentation techniques.

5.1 Feature Extraction
We employ a very simple set of statistical features to an-
alyze accelerometer measurements. The first step in fea-
ture extraction is to divide the measurements into fixed
size time windows (e.g., of 100 ms). Then, within each
window (or segment), the average, median, standard de-
viation, variance, max and min values are calculated for
each x, y, and z signal. Each segment has a total of 18
features, 6 statistical features in 3 linear directions. The
combination of the features for each segment form a fea-

5

0 100 200 300 400 500 600 700 800 900
Time (ms)

2

0

2

4

6

8

10

Ac
ce

le
ra

tio
n

(m
/s

^
2)

Pattern:1542

x
y
z

0 200 400 600 800 1000 1200 1400
Time (ms)

2

0

2

4

6

8

10

Ac
ce

le
ra

tio
n

(m
/s

^
2)

Pattern:695281

x
y
z

Figure 4: Sample Accelerometer Data for Patterns 1542 (left) and 695281 (right): Vertical lines indicate average time
of contact with a contact point across 12 runs.

0 500 1000 1500 2000 2500 3000 3500
Time (ms)

2

0

2

4

6

8

10

Ac
ce

le
ra

tio
n

(m
/s

^
2)

Pin: 5945

x
y
z

0 500 1000 1500 2000 2500
Time (ms)

2

0

2

4

6

8

10

12

Ac
ce

le
ra

tio
n

(m
/s

^
2)

Pin: 6626

x
y
z

Figure 5: Sample Accelerometer Data for PINs 5945 (left) and 6626 (right): Vertical lines indicate average time of
contact with number pad across 12 runs.

ture vector that is used as input to train a machine learn-
ing classifier.

The total number of features in the feature vector is
dependent on the amount of time taken to enter the PIN
or pattern. For example, if a pattern takes 1000 ms to
enter and the segment size is 100 ms, then there exists 10
distinct segments resulting in 180 entries in the feature
vector. Similarly, a pattern that takes 1200 ms will have
12 segments and 216 features.

To account for the difference in length across feature
vectors, empty vector values are filled with zeros. This
has the unfortunate side effect of potentially training the
classifier on the length of the feature vector (or the time
it takes to enter the PIN or pattern). Fortunately, there is
relatively low variance in the number of segments for dif-
ferent PINs and patterns for the optimal segment length,
and further, we found that predictions based only on the
length of the input produces poor results, a small fraction
greater than random guess. See Section 6 for an analysis
on choosing an optimal segment length.

5.2 Machine Learning Classifier

Two classification procedures are used in experimenta-
tion to match the attack scenario described in Section 2.
Recall that we wish to model two scenarios: (1) The at-
tacker has a large corpus of labeled accelerometer data at
his/her disposal and attempts to match unknown input to
some label in the corpus; and (2), the unknown input is
not in the corpus (or not well represented).

To model the first scenario, where the attacker is
matching unknown input to labels in a corpus, we train
a SVM (Support Vector Machine) based on the feature
vector labeled with the PIN or password pattern. Given
accelerometer data from entering a PIN or pattern not
used in training, the resulting SVM model will output
a predicted label (i.e., a PIN or pattern). If the label
matches the input, we consider this a successful predic-
tion.

There are some limitations to this experiment because
the SVM model only knows about the PINs and patterns

6

in the training set; that is, the 50 pattern or 50 PINs used
in the experiment as opposed to all 389,112 possible pat-
terns and 10,000 possible PINs. However, picking from
random chance of the possible 50 patterns would result
in a 2% prediction accuracy. The model greatly exceeds
random guessing by a factor of 20 or more, and in our
best performing setting we predict 60% of the patterns
correctly and 49% of the PINs.

To model the second scenario, where the attacker’s
corpus may not have sufficient samples of the unknown
input, we build a classifier that can predict potentially un-
seen patterns and PINs. To achieve this, we incorporate
the probabilistic output of SVM classifiers into a Hid-
den Markov Model (HMM). The HMM finds the most
likely sequence of input patterns or PINs (maximum a
posteriori) by jointly considering the probabilities of in-
dividual swipe or digit entry classifications along with
the likely transitions between swipes or digit entries. For
example, for a four-digit PIN, the HMM jointly infers the
most likely set of four digits given the individual beliefs
in what digit was pressed at what time, and what digits
are likely to follow other digits – certain combinations
of digit transitions are impossible, and others are more
likely than others. The same inference process can be
used for patterns based on which swipes (connecting two
contact points) are likely to follow previous swipes.

In our experiments, we utilize both a uni-gram and
bi-gram HMM and estimated our transition matrix via
maximum likelihood from a small dataset covering the
50 patterns and 50 PINs used in our experiments. This
is a proof of concept, and a larger model could incor-
porate more refined transition matrixes that accounts for
human pattern/PIN selection factors. In the uni-gram set-
ting, smaller classifications are based on predicting a sin-
gle swipe or digit, and in the bi-gram setting, prediction
is based on two swipes or two digits.

6 Experimental Results
In this section, we present the results of our experiments.
Initially, we explore the ability of the machine classifier
to identify a single swipe motion, both the direction of
the swipe, e.g., swiping left or right, as well as identify-
ing the start and end point of a swipe, e.g., swiping from
the first contact point to the last contact point. Next, we
present our results for classifying an entire PIN or pat-
tern from the test set of 50. We also investigate using
accelerometer data collected from one user to predict the
input of another. Finally, we discuss the results of build-
ing a general classifier that can handle potentially unseen
PINs or patterns using a Hidden Markov Model.

All the results presented in this section were calculated
by performing a five-fold cross validation. We performed

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300 350

A
cc

ur
ac

y
(%

)

Segment Size (ms)

Direction
Point-to-Point

Figure 6: Results for Classifying a Single Swipe Gesture
for Different Segment Sizes

5 such cross validation runs and report the average across
those runs. We found that there is very little variance in
the results for each cross validation run: 1.3% for pat-
terns and 1.2% for PINs.

6.1 SVM Classification
Single Swipes First, we conducted an experiment that
tests the accelerometer’s sensitivity to single swipe mo-
tions. We consider classification of two types: identify-
ing the direction of a swipe and identifying the starting
and ending point of the swipe.

As a test set, a single user connected all combinations
of contact points in a pattern, consisting of 72 unique
swipes. To classify a direction, we considered eight pos-
sible directions of a swipe: N, S, E, W, NE, SE, NW,
SW, where N (north) is moving upward on the screen, S
(south) is moving downward, E (east) is moving right on
the screen, W (west) is moving left on the screen, and
etc.. Of the 72 unique swipes, there is an even distribu-
tion in each direction, and thus classification by random
guessing would predict a swipe’s directions with 12.5%
accuracy. To classify point-to-point, i.e., predicting the
start and end point of a swipe, each swipe in the test
set is unique, and thus classification by random guess-
ing would predict with 1.3% accuracy.

The results of classification for single swipes are pre-
sented in Figure 6. The accuracy values are obtained
by performing a five-fold cross validation across the 10
runs for a test user. We also consider different segment
sizes (the x-axis) for feature extraction. The model is
able to identify the swipe direction with high accuracy,
47% when the segment size is 150 ms, which is 4 times
greater than random guessing. Similar results were seen
for point-to-point classification: 15% prediction accu-

7

racy with a segment size of 50 ms, which is a factor of
11 times greater than random guessing.

The results of this experiment are informative about
an attacker’s ability to learn general input, as well as the
attacker’s ability to perform sequence prediction for pre-
viously unseen input.

Patterns Next, we experiment with detecting an en-
tire pattern from the test set of 50. This experiment
models the first attack scenario where the attacker has
a large corpus of labeled data to compare to unknown in-
put. The data used in this experiment consists of 50 test
patterns entered in 12 independent runs by each of the
three test users. Two of the users, User 1 and User 2, en-
tered the patterns on a HTC Droid Incredible 2, while
the remaining user, User 3, entered the patterns on a
HTC Nexus 1.

We are interested in two primary results. First, we in-
vestigate how well the model can perform if it is trained
and tested with data collected from a single user. This
would be the case if the attacker’s corpus contains sam-
ples from the victim user. However, this may not be the
case, so we also investigate the performance of the ma-
chine classifier if it is trained on one user and tested on
another, as well as across different phone types.

The results for identifying a pattern from the set of 50
test patterns is presented in Figure 7 (left). The graph
presents the results of a five-fold cross validation using
different segment sizes for feature extraction. The first
observation is that the patterns entered by all three users
are well predicted. In the best performing experiment,
the model can classify the pattern entered by User 1 with
an accuracy of 60% using a segment size of 200 ms. The
best experiment for User 2 identified patterns with 50%
accuracy using a segment size of 225 ms, and for User 3,
a prediction accuracy of 48% was achieved with a seg-
ment size of 200 ms. These results indicate that there
is a strong correlation between pattern input of the same
type, and that if an attacker has sufficient samples, the
password pattern will likely be identified with high prob-
ability.

However, the attacker may not have sufficient samples
from the victim user, and may need to train the machine
learning classifier using samples collected from other
users. In Table 3, the results for training and testing on
different users are presented. We choose a segment size
of 225 ms for this experiment because this segment size
was close to the maximal prediction for all three users.
In each row, a model is generated where the training data
comes from a single user, and the model is then used to
predict the input from a different user, indicated in the
column header.

Although the prediction accuracy is degraded; how-
ever, classification still performs well. Note that ran-
dom guessing provides a prediction accuracy of 2%, and
in all combinations of users, the prediction accuracy far
exceeds random guessing. Further, training on a differ-
ent phones also provides strong results – User 3 used a
Nexus 1 phone, while the other two users used an Incred-
ible 2 – and this suggests that training can occur broadly
with many different users and devices.

PINs We performed similar experiments for measur-
ing the ability of an attacker to learn PIN input. Like
patterns, three users each entered in a set of 50 PINs a
total of 12 times. Figure 7 (right) presents the five-fold
cross validation results for different segment sizes.

The results for classifying different PINs is also very
strong. The model could classify 49% of the PINs for
User 1 with a segment size of 250 ms. Similarly, for
User 2, the model can predict PINs with a 47% accuracy
with a segment size of 150 ms, and the model can predict
User 3 with an accuracy of 43% with a segment size of
175 ms. Again, these results show that an attacker with a
sufficient corpus of samples from a victim user can iden-
tify the user’s PIN.

As before, we are also interested in the ability of an
attacker to classify input if the model is trained on in-
put from different users as would be the case if the at-
tacker does not have samples from the victim user. The
results of that experiment are presented in Table 4, and
the results are similar to those for patterns. Although the
prediction accuracy is reduced, it is still a factor greater
than random guessing, and these results, again, indicate
that training can occur broadly across users and phones.

6.2 HMM Classification
Encouraged by the results for classifying input from the
test set of 50 patterns or PINs, we wish to build a model
that can potentially classify arbitrary input of varying
length. This experiment models the second attack sce-
nario where an attacker does not have a sufficient corpus
to compare to for unknown input. Instead, the attacker
attempts to make a sequence of smaller predictions to
identify the pattern or PIN.

A Hidden Markov Model (HMM) is a standard tech-
nique for solving this problem. An HMM combines the
probabilistic output of the SVM models with a set of
likely transitions.

We constructed an HMM by training a transition ma-
trix based on our sample set of 50 patterns and PINs.
This transition matrix is just a proof of concept, and the
attacker could build a more representative transition ma-

8

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 50 100 150 200 250 300 350

A
cc

ur
ac

y
(%

)

Segment Size (ms)

User 1 (Incr 2)
User 2 (Incr 2)

User 3 (Nexus 1)

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 50 100 150 200 250 300 350

A
cc

ur
ac

y
(%

)

Segment Size (ms)

User 1 (Incr 2)
User 2 (Incr 2)

User 3 (G2)

Figure 7: Classification Results for (left) Patterns and (right) PINs with Different Segment Sizes

Testing Set
User 1 User 2 User 3

Training Set
User 1 16% 8%
User 2 22% 17%
User 3 13% 23%

Table 3: Results for Pattern Prediction when Training on
Different Users (225 ms Segment Size)

Testing Set
User 1 User 2 User 3

Training Set
User 1 14% 21%
User 2 14% 16%
User 3 18% 15%

Table 4: Results for PIN Prediction when Training on
Different Users (175 ms Segment Size)

trix based on a larger set of patterns and PINs. Next,
we trained an SVM to predict individual swipes or digit
presses (like in the previous experiment), and then com-
bined the transition matrix with the SVM to select the
most likely sequence of swipes or digit presses. Further,
we can use the HMM to sample the most likely set of pat-
terns of PINs based on the prediction probabilities. This
is particularly useful because Android allows for up to
20 guesses before locking the phone. We consider a pat-
tern or PIN accurately predicted if it is in the top 20 most
likely patterns or PINs obtained from the HMM analysis.

Initially, we built an HMM using uni-gram features
and found the results were poor, so we extended the
HMM for bi-grams. A bi-gram HMM predicts pairs of
swipes or digits being entered to form larger predictions,
as opposed to uni-gram HMM which predicts individ-
ual swipes or digit presses. The bi-gram HMM greatly
outperform the uni-gram version. In five-fold cross val-
idation, the bi-gram HMM is able to identify the pattern
entered within the top 20 guesses 14% of the time, on av-
erage across all three users. The pattern entered was the
top guess 8% of the time. Similarly for PINs, the bi-gram
HMM can select the correct PIN within 20 guesses 23%
of the time on average across all three users; however,
the top choice was the correct PIN 2% of the time.

Finally, it is important to note that an attacker does not
have just a single try to predict the password pattern or

PIN. Beyond the 20 guesses, the attacker will likely have
collected many accelerometer readings for a particular
input because the victim enters secure input many times
over. Consider how many times a day a user must unlock
his/her smartphone, and the accelerometer readings from
each of these events can be used as input to the model.
As a result, the attacker will have many sets of 20 pos-
sible labels for the input, and the attacker can perform
analysis across those predictions. For example, if a PIN
is found in 90% of the predicted sets of 20, it is probably
the user’s PIN with high likelihood. In this lies the real
power of the accelerometer side-channel: The attacker
does not need to guess immediately and can train over
time as more and more accelerometer data is collected.

7 Sensors and Mobile Device Security
As we have shown, an accelerometer sensor on a mobile
device can constitute a surprisingly high-bandwidth side
channel for touchscreen user input. Under some circum-
stances, this channel is of sufficiently fidelity to reduce
the search space for PINs and graphical passwords to a
tractable set of possibilities. Clearly, any effective secu-
rity mechanisms for touchscreen devices with such sen-
sors must deny untrusted applications access, at a min-
imum, to the accelerometer when sensitive touchscreen
input is being provided to other applications.

At the same time, it may be equally undesirable to

9

restrict access to the accelerometer (and other sensors)
when sensitive input operations are not being performed.
Environmental sensors are used, to good effect, to pro-
vide a rich user experience in a diverse range of ap-
plications, including popular games (for kinetic input)
and even for personal health (e.g., pedometers). Many
of these (legitimate) applications are designed to run in
the background at all times. Preventing such applications
from gaining access to the accelerometer at any time, or
requiring the user to manually shut them down before
performing any sensitive operation, would greatly reduce
the appeal of the current trend toward general-purpose
mobile platforms.

One approach might be to carefully vet applications
that use sensors for malicious behavior before allowing
them to be installed or before making them available in
application markets. Unfortunately, this approach is lo-
gistically impractical at scale and, in any case, would re-
quire a level of analysis that ultimately reduces to the
Halting Problem. Despite the clear drawbacks, this is the
approach taken by Apple when vetting applications for
the App Store. An alternative approach, as exemplified
by Google in the Android App Market, is to label appli-
cations that access sensors (or other services) using a per-
mission model; however, this is also insufficient because
users may either ignore such labels or do not understand
their implications.

We propose a different approach. Applications in-
stalled by the user that require access to sensors, how-
ever frivolous they may seem, should be able to use them.
But, the sensors should be disabled (or untrusted appli-
cations denied access to them) whenever a trusted input
function – such as password entry – is being performed.

Unfortunately, the security models implemented by
current handheld platforms do not allow this kind of tem-
poral control over sensors. Instead, applications declare
what they need access to once (typically when they are
first installed by the user or first run), and, from that point
onward, have essentially unrestricted, permanent access
to everything they asked for at any time they wish.

Although current mobile platforms do not support
temporary revocation of sensor access, it could be imple-
mented in a straight forward way, e.g., via a system call
available to trusted input functions to obtain and revoke
exclusive access to sensors. One approach would be for
this system call to cause any untrusted application that
requests access to a sensitive sensor to block (or fail) un-
til the sensitive operation has concluded. Alternatively,
untrusted applications could simply be suspended for the
duration of the sensitive input.

8 Related Work
The study of sensor-based side channels on smartphones
is in its infancy: Two previous papers have investigated
the ability to learn touch input from sensors [4, 15]. Our
work builds and expands upon that research, showing
that the accelerometer is even more sensitive than pre-
viously thought, and input can be leaked with greater ac-
curacy. Additionally, we show that gesturing input types,
not just point touching, can also be leaked via an ac-
celerometer side channel. Our results also continue a
longer tradition of side channel research. In particular,
research on side channels for keyboard input is closely
related [13, 19, 1, 22]. In the rest of this section, we de-
scribe the previous work.

Sensor Based Side Channels Cai et al. first proposed
using on board sensors as a side channel to learn users
input [4]. Their system, touchlogger, describes a side
channel that employs the gyroscopic orientation sensor
to determine broadly where a user touches on a large
keypad. Their results were very encouraging, and un-
der controlled setting, were able to infer which of the 10
regions a user touched with 70% accuracy. Our work dif-
fers in that we are using the accelerometer sensor to infer
swipes as well as touches, and we focus on known secure
input, such as PIN or pattern entry.

More similar to our work is ACCessory [15] by Owusu
et al.. In ACCessory, the authors demonstrate that the ac-
celerometer can be used as a side channel to infer short
sequences of touches on a soft keyboard, and that stan-
dard machine learning techniques can be employed to in-
fer input like passwords. Similarly, we show that the ac-
celerometer can be used to infer secure input, and we also
demonstrate that input can be classified with a sequence
predictor. Our work differs from Owusu et al. in that
we also demonstrate that swiping can be inferred from
accelerometer data in addition to touch input. We addi-
tionally show that certain touch input, like PIN entry, can
be classified at a much higher rate and with fewer guesses
than suggested by Owusu et al.. ACCesory was able to
classify input strings of length 6 with 60% accuracy, but
needed 212 guesses to achieve that result. In a similar ex-
periment with PIN entry (e.g., identifying touch events),
we showed that the PIN entered can be classified with
23% accuracy in just 20 guesses.

Further, these two prior works when combined with
the results herein, demonstrate that smartphone sensors
are highly sensitive, the accelerometer sensor in particu-
lar. The kinds of input that the accelerometer sensor can
record is broad, encompassing both touching and ges-
turing. Effectively, nearly all types of user input could

10

be inferred from the accelerometer sensor. The implica-
tions of this are far reaching with respect to the security
of input on smartphones when an application has access
to the accelerometer.

Smartphone Side Channels Side channels against se-
cure smartphone input has been previously demonstrate
for the password pattern input. Aviv et al. described
a smudge attack that is based on observing the oily
residues that remain on the touchscreen surface after a
pattern is entered [2]. The side channel described here
has a similar goal, but is based on internal sensors rather
than external observations. It should be noted that a de-
termined attackers should be able to combine informa-
tion from both side channels to enhance their ability at
correctly guessing the password pattern.

Other sensors and recording devices have been pro-
posed as side channels. Shlegel et al. proposed Sound-
comber [18] and demonstrated that a malicious app that
has access to the microphone can learn the difference be-
tween general chatter and tone dialing, effectively learn-
ing the numbers a user calls. Xu et al. similarly con-
sidered information that can be leaked if a malicious app
has access to the smartphones camera [21], and Cai et al.
investigate sensors sniffing in earlier work, including the
microphone, camera, and GPS receiver [5].

Keyboard Side Channels There is a rich history of
research on side channels on user input based on key-
boards. Most related is (sp)iphone by Marquardt et al.,
where the authors demonstrated that the accelerometer
on a smartphone placed next to a keyboard can record
the timing of keypresses [13]. Previously, researchers
have shown the timing of key presses can be sufficient
to determining sensitive input, such as passwords [19].
Similar results to were shown for side channels based on
acoustic emanations from keyboards [1, 22].

9 Conclusion

In this paper we showed that the accelerometer sensor
is a surprisingly high-bandwidth side channel for touch-
screen input that can be exploited by malicious applica-
tions to capture sensitive information (such as PIN en-
try or Android graphical passwords). Using off-the-shelf
machine learning techniques, we were able to differen-
tiate patterns from a set of 50 with 60% accuracy, and
PINs with an accuracy of 49%. We also showed that
there is some consistency in accelerometer data across
different users and phones, and that a model trained on
one user may be used to classify input from another with

reasonable performance. Finally, we also showed that it
is possible to classify individual parts of secure input –
e.g., a single swipe left or right, or touching a digit on
the keypad – and that these smaller classifications can be
combined to make larger, general classifications about
user input.

The security models for current mobile platforms are
inadequate to protect against sensor-based attacks in
practice. In particular, applications that have access to
the accelerometer sensor should not be able to read from
the sensor while the user is providing sensitive input. But
current mobile platform permission schemes are insuf-
ficiently to specify this; they provide applications with
“all or nothing” access to every sensor they might ever
need to use. Instead, the permission scheme and enforce-
ment mechanism should restrict or allow access to sen-
sors based on context. Untrusted applications that require
access to a sensor should be granted access only when
sensitive input operations are not occurring.

Smartphone sensors are undeniably useful for legiti-
mate applications, and their potential for enhancing the
user experience is still in the early stages of being un-
locked. While granting an application access to “benign”
sensors, such as the accelerometer, might seem inher-
ently safe, the existence of powerful side-channels sug-
gests, once again, that the situation is more complicated
than it may seem.

References

[1] Dmitri Asonov and Rakesh Agrawal. Keyboard accous-
tic emanations. In Proceedings of IEEE Syymposium on
Security and Privacy, 2004.

[2] Adam J. Aviv, Katherine Gibson, Evan Mossop, Matt
Blaze, and Jonathan M. Smith. Smudge attacks on smart-
phone touch screens. In Proceedings of the 4th USENIX
Workshop On Offensive Technologies, WOOT’10, 2010.

[3] Ling Bao and Stephen Intille. Activity recognition from
user-annotated acceleration data. In Pervasive Comput-
ing, volume 3001 of Lecture Notes in Computer Science,
pages 1–17. 2004.

[4] Liang Cai and Hao Chen. Touchlogger: inferring
keystrokes on touch screen from smartphone motion. In
Proceedings of the 6th USENIX conference on Hot topics
in security, HotSec’11, 2011.

[5] Liang Cai, Sridhar Machiraju, and Hao Chen. Defending
against sensor-sniffing attacks on mobile phones. In Pro-
ceedings of the 1st ACM workshop on Networking, sys-
tems, and applications for mobile handhelds, MobiHeld
’09, 2009.

[6] Google Andorid Development. http://developer.
android.com/reference/android/
hardware/SensorEvent.html.

11

http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html

[7] Splasho Development. Pattern lock pro. https:
//market.android.com/details?id=com.
splasho.patternlockpro.

[8] Google Inc. Google wallet. http://www.google.
com/wallet/.

[9] THQ Inc. Star wars: Lightsaber duel.
http://itunes.apple.com/us/
app/star-wars-lightsaber-duel/
id362158521?mt=8.

[10] Rupesh Jain. Pattern encrypt/decrupt upgrad.
https://market.android.com/details?
id=PatternEncryptDecryptUpgrade.free.

[11] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and
Venu Vasudevan. uwave: Accelerometer-based person-
alized gesture recognition and its applications. Pervasive
Mob. Comput., 5:657–675, December 2009.

[12] Shu Liu and Aaron Striegel. Accurate extraction of face-
to-face proximity using smartphones and bluetooth. In
Proceedings of 20th International Conference on Com-
puter Communications and Networks, ICCN, 2011.

[13] Philip Marquardt, Arunabh Verma, Henry Carter, and
Patrick Traynor. (sp)iphone: decoding vibrations from
nearby keyboards using mobile phone accelerometers. In
Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, 2011.

[14] Uwe Maurer, Anthony Rowe, Asim Smailagic, and
Daniel P. Siewiorek. ewatch: A wearable sensor and
notification platform. In Proceedings of the Interna-
tional Workshop on Wearable and Implantable Body Sen-
sor Networks, 2006.

[15] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig,
and Joy Zhang. Accessory: Keystroke inference using
accelerometers on smartphones. In Proceedings of The
Thirteenth Workshop on Mobile Computing Systems and
Applications, HotMobile, 2012.

[16] Rio Park. Memorize pattern. https:
//market.android.com/details?id=
riopark.pattern.

[17] Nishkam Ravi, Nikhil D, Preetham Mysore, and
Michael L. Littman. Activity recognition from ac-
celerometer data. In In Proceedings of the Seventeenth
Conference on Innovative Applications of Artificial Intel-
ligence(IAAI, pages 1541–1546. AAAI Press, 2005.

[18] Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou,
Mehool Intwala, Apu Kapadia, and XiaoFeng Wang.
Soundcomber: A stealthy and context-aware sound tro-
jan for smartphones. In Proceedgins of the Network and
Distributed System Security Symbosium, NDSS, 2011.

[19] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on ssh.
In Proceedings of the 10th conference on USENIX Secu-
rity Symposium, SSYM’01, 2001.

[20] Bump Technologies. Bump app. bu.mp.
[21] Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan,

and Jin Teng. Stealthy video capturer: a new video-based

spyware in 3g smartphones. In Proceedings of the second
ACM conference on Wireless network security, WiSec
’09, 2009.

[22] Li Zhuang, Feng Zhou, and J. D. Tygar. Keyboard acous-
tic emanations revisited. ACM Trans. Inf. Syst. Secur., 13,
November 2009.

A PINs
Below are the PINs used in the experiment:

8671 4624 8343 6603 7026 5178 3251 2358 4458 8849 3031
6626 1629 0650 5975 1777 1382 1709 2766 7495 2087 5181
9422 6848 5616 6993 5945 9663 2996 7226 9590 6350 4915
4482 6407 4457 7337 4448 7050 1192 1407 4675 6068 0717
9051 5946 5763 5365 7238 2021

B Patterns

Figure 8: Contact Point Number References

Below are the patterns used in the experiment. Refer to Fig-
ure 8 for the ordering of the contact points.

5284693 6749231 2358417 58967 8695471 524638
524176839 7586923 3615294 594617 54982317 5879143
98652471 6392578 5836749 874563 12589436 6359471
58764239 35426 2547 8572639 1542 876529 36528914
695281 586241793 3695741 621458 749583 2584196 126594
769251 5872963 62584913 853476 125347 9658237 65491
3684179 74852196 578416 325914 564893217 7832169
14587 231548 32584697 51263 1523496

12

https://market.android.com/details?id=com.splasho.patternlockpro
https://market.android.com/details?id=com.splasho.patternlockpro
https://market.android.com/details?id=com.splasho.patternlockpro
http://www.google.com/wallet/
http://www.google.com/wallet/
http://itunes.apple.com/us/app/star-wars-lightsaber-duel/id362158521?mt=8
http://itunes.apple.com/us/app/star-wars-lightsaber-duel/id362158521?mt=8
http://itunes.apple.com/us/app/star-wars-lightsaber-duel/id362158521?mt=8
https://market.android.com/details?id=PatternEncryptDecryptUpgrade.free
https://market.android.com/details?id=PatternEncryptDecryptUpgrade.free
https://market.android.com/details?id=riopark.pattern
https://market.android.com/details?id=riopark.pattern
https://market.android.com/details?id=riopark.pattern
bu.mp

	Introduction
	Attack Scenario
	Background
	Data Collection
	Data Analysis and ML Techniques
	Feature Extraction
	Machine Learning Classifier

	Experimental Results
	SVM Classification
	HMM Classification

	Sensors and Mobile Device Security
	Related Work
	Conclusion
	PINs
	Patterns

