Quiz 2 Study Guide

Below is description of work done since the last quiz, including sample problems you can
work on. The quiz will have 3 or 4 questions which will fit into the following three categories: (1)
Programming, where you will be asked to program in correct C++ syntax with pen and paper; (2)
Short Answer, where you will be asked to answer (in paragraph form) a word problem; (3) Math
Proof/Calcuation, where you will be asked to provide a short proof or perform a calculation, with
work shown.

1 C++ Programming
Inheritance
e What is inheritance, and what is its role in the object hierarchy?

e If A is a super class B, write (in C++ syntax) the class descriptions to indicate this relation-
ship.

e Describe the security flags public, private, and protected and their meaning with
respect to inheritance

e Describe the meaning of the virtual flag with respect to inheritance. Provide an example
where virtual is neccesary to ensure that the most specific member function of a class is
used.

Abstract/Pure-Virtual Classes

e What does it mean for a class to be pure virtual?
e What is the syntax to indicate a member function of a class is pure virtual?

e Can pure virtual member functions and non-virtual member functions be mixed? Provide a
trivial example of this that must be the case for all classes, regardless of being pure-virtual.

e Why are pure virtual classes relevant to data structures? Provide an example from class of
where pure virtual classes play a significant role.

2 Algorithm Analysis

Big-O Analysis

Write the mathematical deffinition of Big-O?

In general terms, when analyzing a program, what is the process used to determining the
Big-O of computation?

What counts as an operation in Big-O computation?

Consider a program with two routines, the first routine foo () is O(n) and the second rou-
tine bar () is also O(n). What is the big-O of a program that executes these routines
consecutively, e.g., like below:

foo ()
bar ()

What is the Big-O of the below routine, using bar () and foo () from above?

for(i=0 —> n):
foo ()
bar ()

What is the Big-0 of the following small program?
for(j=0; j < n ; j++){
for (i=0;i<n;ix=2){
cout << 1 << endl;

}
}

Order the following functions in terms of there relative magnatude: n, n?, 1, n", | g(n), n!,
2" n *lg(n), nt.

Prove the following is O(n?): —3n% + 4

Discreet Proofs

Describe, in general terms, the proof technique of induction?

Prove the following using induction:

How is analysis using a loop invariant and induction related?

2

Show, using a loop invariant and induction, that the following short program verifies that all
numbers in the input list are even:

bool all_even (int input[], int length){
for (int i=0; i < length; i++){
if (i%2){
return false;
}
}

return true;

3 Ordered Structures

Lists, ArrayLists and LinkedLists

Describe the desired properties of a List, as compared to the properties of basic arrays?

What are the core functions associated with a list? Write out the pure-virtual class definition
of a list.

Describe the implementation of an ArrayList? What is the Big-O of each of the member
functions?

Describe the implementation of a LinkedList? What is the Big-O of each of the member
functions?

When is an ArrayList preferred over a LinkedList, when is a LinkedList preferred over an
ArrayList? What properties of each list implementation make it desirable in these situations.

When expanding an ArrayList, which is more desirable: increase the array by a fixed amount
for each expansion, or double the amount of space upon each expansion? Why?

Using amortized analysis, show that doubling the amount of space provide constant aver-
age time for array expansion. Similarly, show that fixed amount expansion requires linear
average time.

Stacks and Queues

What is LIFO? What is FIFO? Which operation maps to a queue and which to a stack?

Provide one example in computer science where a Stack is used. Provide one example in
computer science where a Queue is used.

What are the basic operations of a stack?

What are the basic operations of a queue?

Which list implemenation works best for stacks and queues? Why?

If you were to use an ArrayList to implement a queue, how would you do so to minimize
cost? Particularly, what is expensive about using an ArrayList?

Describe a CircularArrayList and discuss why it avoids the above cost when used in imple-
menting a Queue.

4 Sorting

Polynomial Sorting vs. Logorithmic Sorting

e Describe insertion sort and show that this is a O(n?) operation.

e Describe merge sort and (by using visuals) show that merge sort is O(n * [g(n)).

Pivot/Quick Sorting

e Describe the properties of pivot sorting as compared to insertion sort and merge sort?

e What is a better pivot selection strategy: Always choosing the first item in the sub list as the
pivot? Or, choosing a random value as the pivot?

e Explain why Quick Sort is O(n * lg(n))?

S5 Dynamic Programming

e What is dynamic programming and what kinds of problems does it solve?

e Consider Edit-Distance, which is defined as the number insertions, deletions, and swaps that
are required to transform one string into another. For example, the edit distance between
“ACG” and “AGC” is two, requiring the swap of “C” to “G” and “G” to “C”. And the edit
distance between “ACG” and “AGCA”, is three, since the same swaps are required, but with
an additional insert of “A”.

Explain why dynamic programming is a good solution to this algorithm. Consider how
comparing two strings with one additional letter could use information about the comparison
of the previous sub-strings.

e Fill in the dynamically constructed matrix for finding the edit distance between “john” and
“janet” such that each cell contains the edit distance between the subs-string on the column
compared to the sub-string of the row.

S| 5O |—.

e Describe the dynamic part of this algorithm. How can each cell be filled in based on infor-
mation provided by adjacent cells?

e What value in the matrix indicates the edit-distance between the two strings? Explain.

e Argue that finding edit distance of any two strings is O(n * m), where n and m is the length
of the strings.

