Elementary TCP Sockefts

4.1 Introduction

This chapter describes the elementary socket functions required to write a complete
TCP client and server. We will first describe all the elementary socket functions that we
will be using and then develop the client and server in the next chapter. We will work
with this client and server throughout the text, enhancing it many times (Figures 1.12
and 1.13).

We will also describe concurrent servers, a common Unix technique for providing
concurrency when numerous clients are connected to the same sexrver at the same time.
Each client connection causes the server to fork a new process just for that client. In
this chapter, we consider only the one-process-per-client model using fork, but we will
consider a different one-thread-per-client model when we describe threads in Chap-
ter 26.

Figure 4.1 shows a timeline of the typical scenario that takes place between a TCP
client and server. First, the server is started, then sometime later, a client is started that
connects to the server. We assume that the client sends a request to the server, the
server processes the request, and the server sends a reply back to the client. This contin-
ues until the client closes its end of the connection, which sends an end-of-file notifica-
tion to the server. The server then closes its end of the connection and either terminates
or waits for a new client connection.

4.2 socket Function

To perform network I/QO, the first thing a process must do is call the socket function,
specifying the type of communication protocol desired (TCP using IPv4, UDI using
IPv6, Unix domain stream protocol, etc.).

R —
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TCP Server

accept ({
TCP Client ¥

blocks until connection
from client

socket ()

connection establishment
(TCP three-way handshake)

connect (}

data (request)

process request

data (reply)

end-of-file Notification

Figure 4.1 Socket functions for elementary TCP client/server.

#include <sys/socket.h>

int socket {int family, int iype, int profocol} ;

Returns: non-negative descriptor if OK, -1 on error

family specifies the protocol family and is one of the constants shown in Figure 4.2. This
argument is often referred to as domain instead of family. The socket fype is one of the
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constants shown in Figure 4.3. The profocol argument to the socket function should be
set to the specific protocol type found in Figure 4.4, or 0 to select the system’s default for
the given combination of family and type.

Not all combinations of socket family and type are valid. Figure 4.5 shows the valid
combinations, along with the actual protocols that are valid for each pair. The boxes
marked “Yes” are valid but do not have handy acronyms. The blank boxes are not
supported.

family Description

IPv4 protocois

IPv6 protocols

Unix domain protocols (Chapter 15)
Routing sockets (Chapter 18}

Key socket (Chapter 19)

AF INET
AF_INET6
AF_LOCAL
AF_ROUTE
AF _KEY

Figure 4.2 Protocol family constants for socket functon.

type

Description

SOCK _STREAM
SOCK_DERAM
S0CK_SEQPACKET
SOCK_RAW

stream socket
datagram socket

raw socket

sequenced packet socket

Figure 4.3 type of socket for socket function.

FProtocol Description

IPPROTO_TCP
IPPROTO_UDP?
- IPPROTO_SCTP

TCP transport protocol
UDP transport protocol
SCTP transport protocol

Figure 4.4 profocol of sockets for AF_TNET or AF_INETE.

AF INET AF_INET6 AF LOCAL AF_ROUTE

SOCK_STREAM TCP|SCTP | TCP|SCIP Yes
SOCK_DGRAM UDP UDP Yes
"SOCK_SEQPACKET SCTP SCTP Yes
SOCK_RAW iPvd IPve Yes Yes

AF XEY

Figure 4.5 Combinations of family and type for the socket function.

You may also encounter the corresponding PF_xxx constant as the first argument to socket.
We will say more about this at the end of this section.




98

Elementary TCP Sockets Chapter 4

We note that you may encounter AF_UNTX (the historical Unix name} instead of AF_ZLOCAL
(the POSIX name), and we will say more about this in Chapter 15.

There are other values for the family and type arguments. For example, 4.4BSD supports both
AF_NS (the Xerox NS protocols, often called XNS) and AF_ISO (the OS] protocols). Similarly,
the type of SOCK_SEQPACKET, a sequenced-packet socket, is implemented by both the Xerox
NS protocols and the OSI protocols, and we will describe its use with SCTP in Section 9.2. But,
TCP is a byte stream protocol, and supports only SOCK_STRE2M sockets.

Linux supports a new socket type, SOCK_PACKET, that provides access to the datalink, similar
o BPF and DLPLin Figure 2.1. We will say more about this in Chapter 29.

- The key socket, AF_KEY, is newer than the others. It provides support for cryptographic secu-
rity. Similar to the way that a routing socket (AF_ROUTE) is an interface to the kernel’s routing
table, the key socket is an interface into the kernel’s key table. See Chapter 19 for details.

On success, the socket function returns a small non-negative integer value, sirnilar
to a file descriptor. We call this a sockef descriptor, or a sockfd. To obtain this socket
descriptor, all we have specified is a protocol family (IPv4, IPvé, or Unix) and the socket
type (stream, datagram, or raw). We have not yet specified either the local protocol
address or the foreign protocol address.

AF xxx Versus PF_xxx

The “AF " prefix stands for “address family” and the “P¥_" prefix stands for “protocol
family.” Historically, the intent was that a single protocol family might support multi-
ple address families and that the PF_ value was used to create the socket and the AF_
value was used in socket address structures. But in actuality, a protocol family support-
ing multiple address families has never been supported and the <sys/socket.h>
header defines the P¥_ value for a given protocol to be equal to the AF_ value for that
protocol. While there is no guarantee that this equality between the two will always be
true, should anyone change this for existing protocols, lots of existing code would
break. To conform to existing coding practice, we use only the AF_ constants in this
text, although you may encounter the P¥_ value, mainly in calls to socket.

Looking at 137 programs that cali socket: in the BSD/OS 2.1 release shows 143 calls that spec-
ify the AR value and only 8 that specify the P¥_ value.

Historically, the reason for the similar sets of constants with the AF and PF_ prefixes goes
back to 4.1c¢BSD [Lanciani 1996] and a version of the socket function that predates the one we
are describing (which appeared with 4.2BSD). The 4.1c¢BSD version of socket took four argu-
ments, one of which was a pointer to a sockproto siructure. The first member of this struc-
fure was named sp_family and its value was one of the BF_ values. The second member,
sp_protocol, was a protocol number, similar to the third argument to socket today. Speci-
fying this structure was the only way to specify the protocol family. Therefore, in this early
system, the PF_ values were used as structure tags to specify the protocol family in the
sockproto structure, and the AF_ values were used as structure tags to specify the address
family in the socket address structures. The sockproto structure is still in 44BSD
(pp. 626—627 of TCPv2), but is only used internally by the kernel. The criginal definition had
the comment “protocol family” for the sp_family member, but this has been changed to
“address family” in the 4.4B5SD source code.
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4.3

To confuse this difference between the AF _and PF_ constants even more, the Berkeley kernel
data structure that contains the value that is compared to the first argument to socket (the
dom_family member of the domain structure, p. 187 of TCPv2) has the comment that it con-
tains an AF_ value. But, some of the domain structures within the kernel are initialized to the
corresponding AF_ value (p. 192 of TCPv2) while others are initialized to the PF_ value (p. 646
of TCPv2 and p. 229 of TCPv3).

As another historical note, the 42BSD man page for socket,, dated July 1983, calls its first
argurment af and lists the possible values as the AF_ constants.

Finally, we note that the POSIX standard specifies that the first argument to socket be a PF_
value, and the AF_ value be used for a socket address structure. But, it then defines only one
family value in the addrinfo structure (Section 11.6), intended for use in either a call to
socket or in a socket address structure!

connect Function

The connect function is used by a TCP client to establish a connection with a TCP
server.

#include <sys/socket.hs
int conmnect(int sockfd, const struct sockaddr *servaddr, socklen_t addrien) ;
Returns: 0 if OK, —1 on error

sockfd is a socket descriptor returned by the socket function. The second and third
arguments are a pointer to a socket address structure and its size, as described in Sec~
tion 3.3. The socket address structure must contain the IP address and port number of
the server. We saw an example of this function in Figure 1.5.

The client does not have to call bind (which we will describe in the next section)
before calling connect: the kernel will choose both-an ephemeral port and the source
IP address if necessary.

In the case of a TCP socket, the connect function initiates TCP’s three-way hand-
shake (Section 2.6). The function refurns only when the connection is established or an
error occurs. There are several different error returns possible.

1. I the client TCP receives no response to its SYN segment, ETIMEDOUT is
returned. 4.4BSD, for example, sends one SYN when connect is called,
another 6 seconds later, and another 24 seconds later (p. 828 of TCPv2). I no
response is received after a total of 75 seconds, the error is returned.

Some systerns provide administrative control over this timeout; see Appendix E
of TCPv1.

2. If the server’s response to the client’s SYN is a reset (RST), this indicates that no
process is waiting for connections on the server host at the port specified (ie.,
the server process is probably not running). This is a hurd error and the error
ECONNREFUSED is returned to the client as soon as the RST is received.
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An RST is a type of TCP segment that is sent by TCP when something is wrong.
Three conditions that generate an RST are: when a SYN arrives for a port that
has no listening server (what we just described), when TCP wants to abort an
existing connection, and when TCP receives a segment for a connection that
does not exist. (TCPv1 [pp. 246—250] contains additional information.)

3. If the client's SYN elicits an ICMP “destination unreachable” from some inter-
mediate router, this is considered a soft error. The client kernel saves the mes-
sage but keeps sending SYNs with the same time between each SYN as in the
first scenario. If no response is received after some fixed amount of time {75 sec-
onds for 4.4BSD), the saved ICMP error is returned to the process as either
EHOSTUNREACH or ENETUNREACH. It is also possible that the remote system is
not reachable by any route in the local system’s forwarding table, or that the
connect call returns without waiting at all.

Many earlier systems, such as 4.2B5D, incorrectly aborted the connection establishment
attempt when the ICMP “destination unreachable” was received. This is wrong because
this ICMP error can indicate a transient condition. For example, it couid be that the con-
dition is caused by a routing probiem that will be corrected.

Notice that ENETUNREZCH is not listed in Figure A.15, even when the error indicates that
the destination network is unreachable. Network unreachables are considered obsolete,
and applications shouid just treat ENETUNREACH and EHOSTUNREACH as the same error.

We can see these different error conditions with our .si.mple client from Figure 1.5.
We first specify the local host (127.0.0.1), which is running the daytime server, and see
the output.

solaris % daytimetepeli 127.0.0.1
Sunn Jul 27 22:01:51 20063

To see a different format for the returned reply, we specify a different machine’s IP
address (in this example, the IP address of the HP-UX machine).

solaris % daytimetcpeli 192.6.38.100
Sun Jul 27 22:04:59 PDT 2003

Next, we specify an II’ address that is on the local subnet (192.168.1 /24) but the host ID
(100} is nonexistent. That is, there is no host on the subnet with a host ID of 100, so
when the client host sends out ARP requests (asking for that host to respond with its
hardware address), it will never receive an ARP reply.

solaris % daytimetepeli 192.168.1.100
connect error: Connection timed out

We only get the error after the connect times out (around four minutes with Solaris 9).
Notice that our err_sys function prints the human-readable string associated with the
ETIMEDOUT error. '

Qur next example is to specify a host (a local router) that is not running a daytime
server.

solaris % daytimetcpcli 192.168.1.5
connect error: Connection refused
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The server responds immediately with an RST.

Our final example specifies an IP address that is not reachable on the Internet. If we
watch the packets with tcpdump, we see that a router six hops away returns an ICMP
host unreachable error.

solaris % daytimetepeli 192.3.4.5
connect error: No route to host

As with the ETIMEDOUT error, in this example, connect returns the EHOSTUNREACH 4

error only after waiting its specified amount of time. ]
In terms of the TCP state fransition diagram (Figure 2.4), connect moves from the

CLOSED state (the state in which a socket begins when it is created by the socket L

function) to the SYN_SENT state, and then, on success, to the ESTABLISHED state. If |

connect fails, the socket is no longer usable and must be closed. We cannot call

connect again on the socket. In Figure 11.10, we will see that when we call connect

in a loop, trying each IP address for a given host until one works, each time connect

fails, we must close the socket descriptor and call socket again.

44 bind Function

The bind function assigns a local protocol address to a socket. With the Internet proto-
cols, the protocol address is the combination of either a 32-bit IPv4 address or a 128-bit
[Pv6 address, along with a 16-bit TCP or UDP port number.

#include «sys/socket.h>

int bind{int sockfd, const struct sockaddr *myaddr, socklen_t addrlen};

Returns: 0 if OK, -1 on error

Historicaﬁy, the man page-description of bind has said “bind assigns a name to an unnamed
socket.” The use of the term “name” is confusing and gives the cornotation of domain names
(Chapter 11) such as foo.bar.com The bind function has nothing to do with names. bind
assigns a protocol address to a socket, and what that protocol address means depends on the
protocol.

The second argument is a pointer to a protocol-specific address, and the third argu-
ment is the size of this address structure. With TCP, calling bind lets us specify a port
number; an IP address, both, or neither.

¢ Servers bind their well-known port when they start. We saw this in Figure 1.9.
If a TCP client or server does not do this, the kernel chooses an ephemeral port
for the socket when either connect or listen is called. It is normal for a TCP
client to let the kernel choose an ephemeral port, unless the application requires
a reserved port (Figure 2.10), but it is rare for a TCP server to let the kernel
choose an ephemeral port, since servers are known by their well-known port.
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Exceptions to this rule are Remote Procedure Call (RPC} servers. They normally let the
kernel choose an.ephemeral port for their listening socket since this port is then registered
with the RPC port mapper. Clients have to contact the port mapper to obtain the
ephemeral port before they can connect to the server. This also applies to RPC servers
using UDP.

¢ A process can bind a specific IP address to its socket. The IP address must
belong to an interface on the host. For a TCP client, this assigns the source IP
address that will be used for IP datagrams sent on the socket. For a TCP server,
this restricts the socket to receive incoming client connections destined only to
that IP address.

Normally, a TCP client does not bind an IP address to its socket. The kernel
chooses the source IP address when the socket is connected, based on the outgo-
ing interface that is used, which in turn is based on the route required to reach
the server (p. 737 of TCPv2).

If a TCP server does not bind an IP address to its socket, the kernel uses the des-
tination IP address of the client’s SYN as the server’s source IP address (p. 943 of
TCPv2).

As we said, calling bing lets us specify the IF address, the port, both, or neither.
Figure 4.6 summarizes the values to which we set sin addr and sin_port, or
sin6_addr and siné_port, depending on the desired resuit.

Process specifies Result
IP address port
Wildcard 0 Kermnel chooses IP address and port
Wildcard nonzero | Kemel chooses IP address, process specifies port
Local IP address 0 Process specifies [P address, kernel chooses port
Local IP address | nonzero | Process specifies IP address and port

Figure 4.6 Result when specifying IP address and/or port number to bind.

If we specify a port number of 0, the kernel chooses an ephemeral port when bind
is called. But if we specify a wildcard IP address, the kernel does not choose the local IP
address until either the socket is connected (TCP) or a datagram is sent on the socket
(UDP).

With [Pv4, the wildcard address is specified by the constant INADDR_ANY, whose
value is normally 0. This tells the kernel to choose the IP address. We saw the use of
this in Figure 1.9 with the assignment

struct sockaddr in  servaddr;
servaddr.sin_addr.s_addr = htonl (INADDR_ANY) ; /* wildcard */
While this works with IPv4, where an IP address is a 32-bit value that can be repre-

sented as a simple numeric constant (0 in this case), we cannot use this technique with
IPv6, since the 128-bit IPv6 address is stored in a structure. {In C we cannot represent a
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constant structure on the right-hand side of an assignment.) To solve this problem, we
write

struct sockaddr ins serv;

serv.siné_addr = inéaddr any; /* wildcard */

The system allocates and initializes the inéaddr_ any variable to the constant
IN6ADDR_ANY INIT. The <netinet/in.h> header contains the extern declaration
for infaddr_any.

The value of INADDR_ANY (0} is the same in either network or host byte order, so
the use of htonl is not really required. But, since all the INADDR_ constants defined by
the «<netinet/in.h> header are defined in host byte order, we should use htonl with
any of these constants.

If we tell the kemnel to choose an ephemeral port number for our socket, notice that
bind does not return the chosen value. Indeed, it cannot return this value since the sec-
ond argument to bind has the const qualifier. To obtain the value of the ephemeral
port assigned by the kernel, we must call getsocknane to return the protocol address.

A common example of a process binding a non-wildcard IP address to a socket is a
host that provides Web servers to multiple organizations (Section 14.2 of TCPv3). First,
each organization has its own domain name, such as www . organization . com. Next, each
organization’s domain name maps into a different IP address, but typically on the same
subnet. For example, if the subnet is 198.69.10, the first organization’s IP address could
be 198.69.10.128, the next 198.69.10.129, and so on. All these IP addresses are then
aligsed onto a single network interface (using the alias option of the ifconfig com-
mand on 44B5D, for example) so that the IF layer will accept incoming datagrams des-
tined for any of the aliased addresses. Finally, one copy of the HTTP server is started
for each organization and each copy binds only the IP address for that organization.

An alternative technique is to run a single server that binds the wildcard address. When a con-
nection arrives, the server calls getsockname to obtain the destination IP address from the
client, which ir our discussion above could be 198.69.10.128, 198.69.10.129, and so on. The
server thén handles the client request based on the IP address to which the connection was
issued.

One advantage in binding a non-wildcard IP address is that the demultiplexing of a given des-
tination [P address to a given server process 15 then done by the kernel.

We must be careful to distinguish between the interface on which a packet arrives versus the
destination [P address of that packet. In Section 8.8, we will talk about the weak end system
model and the strong end system model. Most implementations employ the former, meaning
it is okay for a packet to arrive with a destination IP address that identifies an interface other
than the interface on which the packet arrives. (This assumes a multihomed host.) Binding a
non-wildcard IP address restricts the datagrams that will be delivered to the socket based only
on the destination IP address. It says nothing about the arriving interface, unless the host
employs the strong end system model.

A common error from bind is EADDRINUSE (“Address already in use”). We will
say more about this in Section 7.5 when we talk about the S0_REUSEADDR and
SO_REUSEPORT socket options.

i
1
i

_ * .
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4.5 1listen Function
The 1isten function is called only by a TCP server and it performs two actions:

1. When a socket is created by the socket function, it is assumed to be an active
socket, that is, a client socket that will issue a connect. The l1isten function
converts an unconnected socket into a passive socket, indicating that the kernel
should accept incoming connection requests directed to this socket. In terms of
the TCP state transition diagram (Figure 2.4), the call to Iisten moves the
socket from the CLOSED state to the LISTEN state.

2. The second argument to this function specifies the maximum number of connec-
tions the kernel should queue for this socket.

#include <sys/socket.h>

int listen{int sockfd, int backlog) ;

Returns: 0if OK, —1 on error

This function is normally called after both the socket and bind functions and must be
called before calling the accept function.

To understand the backlog argument, we must realize that for a given listening
socket, the kernel maintains two queues:

1. An incomplete connection queue, which contains an entry for each SYN that has
arrived from a client for which the server is awaiting completion of the TCP
three-way handshake. These sockets are in the SYN_RCVD state (Figure 2.4).

2. A completed connection queue, which contains an entry for each client with whom
the TCP three-way handshake has completed. These sockets are in the ESTAB-
LISHED state (Figure 2.4).

Figure 4.7 depicts these two queues for a given listening socket.
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Figure 4.7 The two queues maintained by TCP for a listening socket.

When an entry is created on the incomplete queue, the parameters from the listen socket
are copied over to the newly created connection. The connection creation mechanism is
completely automatic; the server process is not involved. Figure 4.8 depicts the packets
exchanged during the connection establishment with these two queues.

client server

connect cated

W—

create entry on incomplete queue
o SYNK, ACK 1

connec‘t returns ACK K1

RIT

entry moved from incomplete
queue to completed gueue,
accept can return

Figure 4.8 TCP three-way handshake and the two queues for a listening socket.

When a SYN arrives from a client, TCP creates a new entry on the incomplete queue
and then responds with the second segment of the three-way handshake: the server’s
SYN with an ACK of the client’s SYN (Section 2.6). This entry will remain on the
incomplete queue until the third segment of the three-way handshake arrives (the
client’s ACK of the server’s SYN), or until the entry times out. (Berkeley-derived imple-
mentations have a timeout of 75 seconds for these incomplete entries.) If the three-way
handshake completes normally, the entry moves from the incomplete queue to the end
of the completed queue. When the process calls accept, which we will describe in the
next section, the first entry on the completed queue is returned to the process, or if the
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queue is empty, the process is put to sleep until an entry is placed onto the completed
queue.
There are several points to consider regarding the handling of these two queues.

» The backlog argument to the 1isten function has historically specified the maxi-
mum value for the sum of both queues.

There has never been a formal definition of what the backlog means. The 4.2B5D man page
says that it “defines the maximum length the queue of pending connections may grow to.”
Many man pages and even the POSIX specification copy this definition verbatim, but this defi-
nition does not say whether a pending connection is one in the SYN_RCVD state, one in the
ESTABLISHED state that has not yet been accepted, or either. The historical definition in this
bullet is the Berkeley implementation, dating back to 4.2BSD, and copied by many others.

» Berkeley-derived implementations add a fudge factor to the backlog: Tt is multiplied
by 1.5 (p- 257 of TCPv1 and p. 462 of TCPv2). For example, the commonly specified
backlog of 5 really allows up to 8 queued entries on these systems, as we show in Fig-
ure 4.10.

The reason for adding this fudge factor appears lost to history [Joy 1994]. But if we consider
the backlog as specifying the maximum number of completed connections that the kernel will
queue for a socket ([Borman 1997b), as discussed shortly), then the reason for the fudge factor
is to take into account incomplete connections on the queue.

* Do not specify a backlog of 0, as different implementations interpret this differently
(Figure 4.10). If you do not want any clients connecting to your listening socket,
close the listening socket.

+  Assuming the three-way handshake completes normally (i.e., no lost segments and
no retransmissions), an entry remains on the incomplete connection queue for one
RTT, whatever that value happens to be between a particular client and server. Sec-
tion 14.4 of TCPv3 shows that for one Web server, the median RTT between many
clients and the server was 187 ms. (The median is often used for this statistic, since
a few large values can noticeably skew the mean.}

* Historically, sample code always shows a backlog of 5, as that was the maximum
value supported by 42BSD. This was adequate in the 1980s when busy servers
would handle only a few hundred connections per day. But with the growth of the
World Wide Web (WWW), where busy servers handle millions of connections per
day, this small number is completely inadequate (pp. 187-192 of TCPv3). Busy
HTTP servers must specify a much larger backlog, and newer kernels must support
larger values.

Many current systems allow the administrator to modify the maximun value for the backlog.

* A problem is: What value should the application specify for the backlog, since 5 is
often inadequate? There is no easy answer to this. HTTP servers now specify a
larger value, but if the value specified is a constant in the source code, to increase
the constant requires recompiling the server. Another method is to assume some
default but allow a command-line option or an environment variable to override
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the default. It is always acceptable to specify a value that is larger than supported
by the kernel, as the kernel should silently truncate the value to the maximum value
that it supports, without returning an error (p. 456 of TCPv2).

We can provide a simple solution to this problem by modifying our wrapper func-
tion for the 1isten function. Figure 4.9 shows the actual code. We allow the envi-
ronment variable LISTENQ to override the value specified by the caller.

37 void libfwrapsock.c
138 Listen(int fd, int backleg}
139 {
140 char *pLr;
141 /* can override 2nd argument with environment variable */
142 if ( (ptr = getenv("LISTENQ")} f= NULL)
143 backlog = atoi(ptr);
144 if (listen{fd, backlog) < 0}
145 err_sys("listen error"};
146 } .
libfwrapsock.c

Figure 49 Wrapper function for 1 isten that allows an environment variable to specify backlog.

Manuals and books have historically said that the reason for queuing a fixed number
of connections is to handle the case of the server process being busy between succes-
sive calls to accept. This implies that of the two queues, the completed queue
should normally have more entries than the incomplete queue. Again, busy Web
servers have shown that this is false. The reason for specifying a large backlog is
because the incomplete connection queue can grow as client SYNs arrive, waiting for
completion of the three-way handshake.

If the queues are full when a client SYN arrives, TCP ignores the arriving SYN
(pp- 930-931 of TCPv2); it does not send an RST. This is because the condition is
considered temporary, and the client TCP will retransmit its SYN, hopefully finding
room on the queue in the near future. If the server TCP immediately responded
with an RST, the client’s connect would return an erro, forcing the application to
handle this condition instead of letting TCP’s normal retransmission take over. Also,
the client could not differentiate between an RST in response to a SYN meaning
“there is no server at this port” versus “there is a server at this port but its queues

are full.”

Some implementations do send an RST when the queue is full. This behavior is incorrect for
the reasons stated above, and unless your client specifically needs to interact with such a
server, it’s best to ignore this possibility. Coding to handle this case reduces the robustness of
the client and puts more load on the network in the normal RST case, where the port realiy has
no server listening on it.
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+ Data that arrives after the three-way handshake completes, but before the server
calls accept, should be queued by the server TCP, up to the size of the connected
socket’s receive buffer.

Figure 4.10 shows the actual number of queued connections provided for different
values of the backlog argument for the various operating systems in Figure 1.16. For
seven different operating systems there are five distinct columns, showing the variety of
interpretations about what backlog means!

Maximum actual number of gueued connections
Mac05 10.2.6 FreeBSD 4.8
backlog ATX 5.1 Linux 2.4.7 HP-UX 11.11 FreeBSD 5.1 Solaris 2.9
0 1 3 i 1 i
i 2 4 i 2 2
2 4 5 3 3 4
3 5 6 4 4 5
4 7 7 6 5 6
5 8 8 7 & 8
6 i0 9 9 7 10
7 11 10 i0 8 11
8 13 i1 12 9 i3
9 14 12 13 10 14
10 16 13 15 11 16
11 17 14 16 12 17
12 19 15 18 13 19
13 20 i6 19 14 20
14 22 i7 21 15 22

Figure 4.10 Actual number of queued connections for values of backlog.

AIX and MacOS have the traditional Berkeley algorithm, and Solaris seems very close to
that algorithm as well. FreeBSD just adds one to backlog.

The program to measure these values is shown in the solution for Exercise 15.4.

As we said, historically the backlog has specified the maximum value for the sum of both
queues. During 1996, a new type of attack was launched on the Internet called SYN flooding
[CERT 1996b]. The hacker writes a program to send SYNs at a high rate to the victim, filling
the incomplete connection queue for one or more TCF ports. (We use the term hacker to mean
the attacker, as described in [Cheswick, Bellovin, and Rubin 2003].) Additionally, the source IP
address of each SYN is set to a random number (this is called IP spoofing) so that the server’s
SYN/ACK goes nowhere. This also prevents the server from knowing the real IP address of
the hacker. By filling the incomplete queue with bogus SYNs, legitimate SYNs are not queued,
providing a denial of service to legitimate clients. There are two commonly used methods of
handling these attacks, summarized in [Borman 1997b]. But what is most interesting in this
note is revisiting what the 1 isten backlog really means. It should specify the maximum num-
ber of completed connections for a given socket that the kernel will queue. The purpose of hav-
ing a limit on these completed connections is to stop the kernel from accepting new connection
requests for a given socket when the application is not accepting them (for whatever reason).
If a system implements this interpretation, as does BSD/OS 3.0, then the application need not
specify huge backlog values just because the server handles lots of client requests (e.g., a busy
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Web server) or to provide protection against SYN flooding. The kernel handles lots of incom-
plete connections, regardless of whether they are legitimate or from a hacker. But even with
this interpretation, scenarios do oceur where the traditional value of 5 is inadequate.

accept Function

accept is called by a TCP server to return the next completed connection from the
front of the completed connection queue (Figure 4.7). If the completed connection
queue is empty, the process is put to sleep (assuming the default of a blocking socket).

#include <sys/socket.h»>

int accept(int sockfd, struct sockaddr *cliaddr, socklen t *addrlen} ;

Returns: non-negative descriptor if OK, —1 on error

The cliaddr and addrlen arguments are used to return the protocol address of the
connected peer process (the client). addrilen is a value-result argument (Section 3.3):
Before the call, we set the integer value referenced by *addrlen to the size of the socket
address structure pointed to by cliaddr; on return, this integer value contains the actual
number of bytes stored by the kernel in the socket address structure.

If accept is successful, its return value is a brand-new descriptor automatically
created by the kernel. This new descriptor refers to the TCP connection with the client.
When discussing accept, we call the first argument to accept the listening socket (the
descriptor created by socket and then used as the first argument to both bind and
listen), and we call the return value from accept the connected socket. It is important
to differentiate between these two sockets. A given server normally creates only one lis-
tening socket, which then exists for the lifetime of the server. The kernel creates one
connected socket for each client connection that is accepted (i.e., for which the TCP
three-way handshake completes). When the server is finished serving a given client, the
connected socket is closed.

This function returns up to three values: an integer return code that is either a new
socket descriptor or an error indication, the protocol address of the client process
(through the cliaddr pointer), and the size of this address (through the addrlen pointer).
If we are not interested in having the protocol address of the client returned, we set both
cliaddr and addrlen to null pointers.

Figure 1.9 shows these points. The connected socket is closed each time through the
loop, but the listening socket remains open for the life of the server. We also see that the
second and third arguments to accept are null pointers, since we were not interested
in the identity of the client.

Example: Vaiue-Result Arguments

We will now show how to handle the value-result argument to accept by modifying
the code from Figure 1.9 to print the IP address and port of the client. We show this in
Figure 4.11.
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introfdaytimetcpsrol.c

1 #include *unp.h*
2 #include <time.h>
3 int
4 wmain{int argc, char **argv)
5
6 int iistenfd, connfd;
7 socklen t len;
8 struct sockaddr in servaddr, cliaddr;
g char buff [MAXLINE] ;
ic time t ticks:
11 listenfd = Socket (AF_INET, SOCK_STREAM, 0);
12 bzero{&servaddr, sizeof (servaddr));
13 servaddr.sin_family = AF_INET;
14 servaddr.sin_addr.s_addr = htonl (INADDR_ANY) ;
15 servaddr.sin_port = htons(13); /* daytime server */
is Bind(ligtenfd, (SA *)} &servaddr, sizeof (servaddr));
17 Listen (listenfd, LISTENQ);
18 for ( ; ; )} {
i9 len = sizeof {cliaddr);
20 connfd = Accept{listenfd, (SA *} &cliaddr, &len};
21 printf ("comnection from %s, port %d\n",
22 Inet ntop{AF_INET, &cliaddr.sin_addr, buff, sizeof (buff}),
23 ntohs (cliaddr.sin port));
24 ticks = time (NULL);
25 snprintf (buff, sizeof (buff), "%.24s\r\n", ctime(&ticks));
26 Write (connfd, buff, strlen{buff));
27 Cliose(connfd);
28 3
29 }

introfdaytimetcpsrvl.c
Figure 4.11 Daytime server that prints client IP address and port.

New declarations

7-8 We define two new variables: len, which will be a value-result variable, and
cliaddr, which will contain the client’s protocol address.

Accept connection and print client’s address

19-23 We initialize 1en to the size of the socket address structure and pass a pointer to the
cliaddr structure and a pointer to len as the second and third arguments to accept.
We call inet_ntop (Section 3.7) to convert the 32-bit IP address in the socket address
structure to a dotted-decimal ASCII string and call ntohs (Section 3.4) to convert the
16-bit port number from network byte order to host byte order.

Calling sock_ntop instead of inet ntop would make our server more protocol-indepen-
dent, but this server is already dependent on IPv4. We will show a protocol-independent ver-
sion of this server in Figure 11.13.
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If we run our new server and then run our client on the same host, connecting to
our server twice in a row, we have the following output from the client:

solaris % daytimetcpeli 127.0.0.1

Thu Sep 11 12:44:00 2003

solaris % daytimetcpecli 192.168.1,20
Thu Sep 11 12:44:09 2003

We first specify the server’s IP address as the loopback address (127.0.0.1) and then as
its own IP address (192.168.1.20). Here is the corresponding server output:
solaris # daytimetcpsrvl

connection from 127.0.0.1, port 43388
connection from 192.168.1.20, port 43389

Notice what happens with the client’s IP address. Since our daytime client (Figure 1.5)
does not call bind, we said in Section 4.4 that the kernel chooses the source IP address
based on the outgoing interface that is used. In the first case, the kernel sets the source
IP address to the loopback address; in the second case, it sets the address to the IP
address of the Ethernet interface. We can also see in this example that the ephemeral
port chosen by the Solaris kernel is 43388, and then 43389 (recall Figure 2.10).

As a final point, our shell prompt for the server script changes to the pound sign
(#), the commonly used prompt for the superuser. Qur server must run with superuser
privileges to bind the reserved port of 13. If we do not have superuser privileges, the
call to bind will fail:

I

solaris % daytimetcpsrvl
bind error: Permission denied

fork and exec Functions

Before describing how to write a concurrent server in the next section, we must describe
the Unix fork function. This function (including the variants of it provided by some
systems) is the only way in Unix to create a new process.

#include <unistd.hs>

pid t fork(veid);

Returns: 0 in child, process ID of child in parent, —1 on erzor

If you have never seen this function before, the hard part in understanding fork is
that it is called once but it returns fwice. It returns once in the calling process (called the
parent) with a return value that is the process ID of the newly created process (the
child). It also returns once in the child, with a return value of 0. Hence, the return value
tells the process whether it is the parent or the child.

The reason fork returns 0 in the child, instead of the parent’s process II, is because
a child has only one parent and it can always obtain the parent’s process ID by calling
getppid. A parent, on the other hand, can have any number of children, and there is

b | .




