3.1

3.2

Sockets Introduction

Introduction

This chapter begins the description of the sockets APL. We begin with socket address
structures, which will be found in almost every example in the text. These structures
can be passed in two directions: from the process to the kernel, and from the kernel to
the process. The latter case is an example of a value-result argument, and we will
encounter other examples of these arguments throughout the text.

The address conversion functions convert between a text representation of an
address and the binary value that goes into a socket address structure. Most existing
IPv4 code uses inet addr and inet ntoa, but two new functions, inet_pton and
inet_ntop, handle both IPv4 and IPvé.

One problem with these address conversion functions is that they are dependent on
the type of address being converted: IPv4 or TPv6. We will develop a set of functions
whose names begin with sock_ that work with socket address structures in a protocol-

independent fashion. We will use these throughout the text to make our code protocol-
independent.

Socket Address Structures

Most socket functions require a pointer to a socket address structure as an argument.
Each supported protocol suite defines its own socket address structure. The names of

these structures begin with sockaddr_ and end with a unique suffix for each protocol
Suite.

67

Sockets Introduction Chapter 3

1Pv4 Socket Address Siructure

An IPv4 socket address structure, commonly called an “Internet socket address struc-
ture,” is named sockaddr_in and is defined by indluding the <netinet/in.h>
header. Figure 3.1 shows the POSIX definition.

struct in_addr {

in addr_t s_addr; /* 32-bit Ipve address */
/* network byte ordered */

}i
struct sockaddr_in {
uint8 t sin_ len; /* length of structure (16} */
sa_family bt sin_family: /* AF_INET */
in_port_t ain _port;: /* 16-bit TCP or UDP port number */
/* network byte ordered */
struct in_addr sin_addr; /* 32-bit IPV4 address */
/* network byte ordered */
char sin _zerol[sl; /* unused */

Yi

Figure 3.1 The Internet (IPv4) socket address structure: sockaddr_in.

There are several poinis we need to make about socket address structures in general
using this example:

+ The length member, sin_len, was added with 4.3BSD-Reno, when support for the
OSI protocols was added (Figure 1.15). Before this release, the first member was
sin_family, which was historically anuns igned short. Not all vendors support
a length field for socket address structures and the POSIX specification does not
require this member. The datatype that we show, uints_t, is typical, and POSIX-
compliant systems provide datatypes of this form (Figure 3.2).

Having a length field simplifies the handling of variable-length socket address struc-
tures.

e Even if the length field is present, we need never set it and need never examine it,
unless we ate dealing with routing sockets (Chapter 18). Itis used within the kernel
by the routines that Jeal with socket address structures from various protocol fami-
lies (e.g., the routing table code).

The four socket functions that pass 2 socket address structure from the process to the kernel,
bind, connect, sendto, and sendmsg, all go through the sockargs functionina Rerkeley-
derived implementation (p- 45 of TCPv2). This function copies the socket address stzuctur®
from the process and explicitly sets its sin_len member to the size of the structure that was
passed as an argument {0 these four functions. The five socket functions that pass a socket
address structure from the kernel to the process, accept, recvirom, recvisg, getpeernan,
and getsockname, ail set the sin_len member before returning to the process.

Unfortunately, there is normally no simple compile-time test to determine whether an imple-
mentation defines a length field for its socket address structures. In our code, we test our OWE
HAVE_SOCKADDR_SA_LEN constant (Figure D.2), but whether to define this constant or 1ot

Section 3.2

Soake_t Address Struchires 69

requires trying to compile a simple test program that uses this optional structure member and
seeing if the compilation succeeds or niot. We will see in Figure 3.4 that IPv6 implementations
are required to define SIN6_LEN if socket address structures have a length field. Some [Pv4
implermentations provide the length field of the socket address structure to the application
based on a compile-time option (e.g., _SOCKADDR_LEN). This feature provides compatibility
for older programs. .

The POSIX specification requires only three members in the structure: sin_family,
sin_addr, and sin_port. It is acceptable for a POSIX-compliant implementation
to define additional structure members, and this is normal for an Internet socket
address structure. Almost all implementations add the sin_zero member so that
all socket address structures are at least 16 bytes in size.

We show the POSIX datatypes for the s_addr, sin family, and sin_port mem-
bers. The in_addr_t datatype must be an unsigned integer type of at least 32 bits,
in_port_t must be an unsigned integer type of at least 16 bits, and sa_family t
can be any unsigned integer type. The latter is normally an 8-bit unsigned integer if
the implementation supports the length field, or an unsigned 16-bit integer if the
length field is not supported. Figure 3.2 lists these three POSIX-defined datatypes,
along with some other POSIX datatypes that we will encounter.

Datatype Description Header
int8_t Signed 8-bit integer <sys/types.h>
uint8_t Unsigned 8-bit integer <sys/types.h>
intlé_t Signed 16-bit integer <sys/types.h>
uintlg_t Unsigned 16-bit integer <sys/types.h>
int3z t Signed 32-bit integer <sys/types.h>
uint32_t Unsigned 32-bit integer <sys/types.h>
sa_family t | Address family of socket address structure «<sys/socket . h>
socklen_t Length of socket address structure, normally uint3z_t | <sys/socket.h>
in addr t IPv4*address, normally uint32_t <netinet/in.h>
in_port_t TCP or UDP port, normaily uint16_t <netinet/in.h»>

Figure 3.2 Datatypes required by the POSIX specification.

You will also encounter the datatypes u_char, u_shozrt, u_int, and u_long,
which are all unsighed. The POSIX specification defines these with a note that they
are obsolete. They are provided for backward compatibility.

Both the IPv4 address and the TCP or UDP port number are always stored in the
structure in network byte order. We must be cognizant of this when using these
members. We will say more about the difference between host byte order and net-
work byte order in Section 3.4.

The 32-bit [Pv4 address can be accessed in two different ways. For example, if serv
is defined as an Internet socket address structure, then serv.sin_addr references

70 Sockets Introduction Chapter 3

the 32-bit IPv4 address as an in_addr structure, while serv.sin_addr.s_addr
references the same 32-bit IPv4 address as an in_addr t (typically an unsigned
32-bit integer). We must be certain that we are referencing the IPv4 address cor-
rectly, especially when it is used as an argument to a function, because compilers
often pass structures differently from integers.

The reason the sin_addr member is a structure, and not just an in_addr &, is historical.
Farlier releases (4.2BSD) defined the in_addr structure as a union of various structures, to
allow access to each of the 4 bytes and to both of the 16-bit values contained within the 32-bit

IPv4 address. This was used with class A, B, and C addresses to fetch the appropriate bytes of
the address. But with the advent of subnetting and then the disappearance of the various
address classes with classless addressing (Section A4}, the need for the union disappeared.
Most systems today have done away with the union and just define in_addr asa structure
with a single in_addr_t member.

e The sin_zero member is unused, but we always set it to 0 when filling in one of
these structures. By convention, we always set the entire structure to 0 before filling
it in, not just the sin_zero member.

Although most uses of the structure do not require that this mermber be 0, when binding a non-
wildcard IPv4 address, this member must be € (pp- 731-732 of TCPv2).

e Socket address structures are used only on a given host: The structure itself is not
communicated between different hosts, although certain fields (e.g., the IP address
and port) are used for communication.

Generic Socket Address Structure

A socket address structures is always passed by reference when passed as an argument
to any socket functions. But any socket function that takes one of these pointers as afl
argument must deal with socket address structures from any of the supported protocol
families.

A problem arises in how to declare the type of pointer that is passed. With ANSIC,
the solution is simple: void * 18 the generic pointer type. But, the socket functions pre-
date ANSI C and the solution chosen in 1982 was fo define a generic socket address
structure in the <8ys /socket .h> header, which we show in Figure 3.3

struct sockaddr {

uintd_t ga_len;
sa_family_t sa_family: /* address family: AF_xxx value *f
char sa_data[14]; /* protocol-specific address */

i

Tigure 3.3 The generic socket address structure: sockaddr.

The socket functions are then defined as taking a pointer to the generic socket
address structure, as shownhere in the ANSI C function prototype for the bind functiot

ik

Section 3.2 Socket Address Structures 71

int bind(int, struct sockaddr =, socklen_t);

This requires that any calls to these functions must cast the pointer to the protocol-spe-
cific socket address structure to be a pointer to a generic socket address structure. For
example,

struct sockaddr in serv; /* IPv4 socket address structure */
/* £ill in serv{} */
l bind(sockfd, (struct sockaddr *) &serv, sizeof{serv)):
If we omit the cast “(struct sockaddr *),” the C compiler generates a warning of
the form “warning: passing arg 2 of ‘bind” from incompatible pointer type,” assuming
the system’s headers have an ANSI C prototype for the bind function.

From an application programmer’s point of view, the only use of these generic
socket address structures is to cast pointers to protocol-specific structures.

Recali in Section 1.2 that in our unp . h header, we define Sa to be the string “struct sock-
addr” just to shorten the code that we must write to cast these pointers.

From the kernel’s perspective, another reason for using pointers to generic socket address
structures as arguments is that the kernel must take the caller’s pointer, cast it to a struct
sockaddr *, and then look at the value of sa_family to determine the type of the structure,
Bat from an application programmer’s perspective, it would be simpler if the pointer type was
void *, omitting the need for the explicit cast,

IPv6 Socket Address Structure

The 1Pv6 socket address is defined by including the <netinet/in.h> header, and we
show it in Figure 3.4.

.struct iné_addr, {

uintg_t s6_addr[is]; /* 128-bit IPvé address */
. /* network byte ordered */

}i
#define SING LEN /* required for compile-time tests */

struct sockaddr iné {

uintg t sin6_len; /* length of this struct (28) */
sa_family t sing_family; /* AF_INETE */
in port_t sing_port; /* transport layer port# */

/* network byte ordered */
uin£32_t siné_flowinfo; /* flow information, undefined */
struct iné_addr siné_addr; /* IPve address */

/* network byte ordered */
uintiz t siné_scope_id; /* set of interfaces for a scope */

Figure 3.4 IPv6 socket address structure: sockaddr_ins.

The extensions to the sockets AP for IPv6 are defined in RFC 3493 [Gilligan et al. 2003].

72 Sockets Introduction Chapter 3

Note the following points about Figure 3.4:

o The SIN6_ LEN constant must be defined if the system supports the length mem-
ber for socket address structures.

e The IPv6 family is A¥_INET6, whereas the IPv4 family is AF_INET.

e The members in this structure are ordered so that if the sockaddr_iné struc-
ture is 64-bit aligned, so is the 128-bit siné_addr member. On some 64-bit pro-
cessors, data accesses of 64-bit values are optimized if stored on a 64-bit
boundary.

e The siné fliowinfo member is divided into two fields: -

o The low-order 20 bits are the flow label
¢ The high-order 12 bits are reserved

The flow label field is described with Figure A2, The use of the flow label field
is still a research topic.

e The sin6_scope_id identifies the scope zone in which a scoped address is
meaningful, most commonly an interface index for a link-local address (Sec-
tion A.5).

New Generic Socket Address Structure

A new generic socket address structure was defined as part of the IPv6 sockets AT], to
overcome some of the shortcomings of the existing struct sockaddr. Unlike the
struct sockaddr, the new struct sockaddr_storage is large enough fo hold any
socket address type supported by the system. The sockaddr_storage structure is
defined by including the <net inet/in.h> header, which we show in Figure 3.5.

struct sockaddr storage {

uintg t ss_len; /* length of this struct {implementation dependent!}

sa_family_t ss_family; /* address family: AF ook value */
/* implementation-dependent elements to provide:
+ @) alignment sufficient to fulfill the alignment reguirements of

* all socket address types that the system supports.

* b} epnough storage to hold any type of socket address that the
* system supports.

*/

Figure 3.5 The storage socket address structure: sockaddr_storage.

The sockaddr storage fype provides a generic socket address structure that is
different from struct sockaddr in two ways:

a) If any socket address structures that the system supports have alignment
requirements, the sockaddr storage provides the strictest alignment
requirement.

Section 3.2 Socket Address Structures 73

b) The sockaddr storage is large enough to contain any socket address struc-
ture that the system supports.

Note that the fields of the sockaddr_storage structure are opaque to the user, except
for ss_family and ss_len (if present). The sockaddr_ storage must be cast or
copied to the appropriate socket address structure for the address given in ss_family
to access any other fields.

Comparison of Socket Address Structures

Figure 3.6 shows a comparison of the five socket address structures that we will
encounter in this text: [Pv4, IPv6, Unix domain (Figure 15.1), datalink (Figure 18.1), and
storage. In this figure, we assume that the socket address structures all contain a one-
byte length field, that the family field also occupies one byte, and that any field that
must be at least some number of bits is exactly that number of bits.

1Pv4 IPve . Unix Datalink Storage
sockaddr_in{} sockaddr_ing{} sockaddzr_un{} sockaddr dl{} sockaddr_storage{}
length |2F_INET| | length lar_1nste) | length lap_rocar| | length [AF LINK| | length | AF xxx
16-bit port# 16-bit port# interface index
32-bit 32-bit type | namelen
IPv4 address flow label addrlen | sellen
interface name
' and
e 128-bit link-layer address
fixed-length (16 bytes) [Pv6 address
Figure 3.1 . pathname
to 104 bytes,
op ytes) variable-length
Figure 18.1
32-bit
scope ID
fixed-length (28 bytes})
Figure 3.4
variable-length longest on system
Figure 15.1

Figure 3.6 Comparison of various socket address structures.

74 Sockets Introduction Chapter 3

Two of the socket address structures are fixed-length, while the Unix domain structure
and the datalink structure are variable-length. To handle variable-length structures,
whenever we pass a pointer to a socket address structure as an argument to one of the
socket functions, we pass its length as another argument. We show the size in bytes (for
the 4.4BSD implementation) of the fixed-length structures beneath each structure.

The sockaddr_un structure itself is not varjable-length (Figure 15.1), but the amount of infor-
mation—the pathname within the structure—is variable-length. When passing pointers to
these structures, we must be careful how we handle the length field, both the length field in
the socket address structure itself (if supported by the implementation) and the length to and
from the kernel.

This figure shows the style that we follow throughout the text: structure names are always
shown in a bolder font, followed by braces, as in sockaddr_in{}.

We noted earlier that the length field was added to 2l the socket address structures with the
4.3BSD Reno release. Had the length field been present with the original release of sockets,
there would be no need for the length argument to all the socket functions: the third argument
to bind and connect, for example. Instead, the size of the structure could be contained in the
lengtt: feld of the structure.

3.3 Value-Result Arguments

H We mentioned that when a socket address structure is passed to any socket function, it

is always passed by reference. That is, a pointer to the structure is passed. The length

! of the structure is also passed as an argument. But the way in which the length is

: passed depends on which direction the structure is being passed: from the process to
the kernel, or vice versa.

1. Three functions, bing, connect, and sendto, pass a socket address structure
from the process to the kernel. One argument to these three functons is the
pointer to the socket address structure and another argument is the integer size
of the structure, as in

struct sockaddr_in serv;
/* £ill in serv{} =/

connect {sockfd, {SA *) &serv, sizeof(serv));

Since the kemnel is passed both the pointer and the size of what the pointer
points to, it knows exactly how much data to copy from the process into the ker-
nel. Figure 3.7 shows this scenario.

»

Section 3.3

Value-Result Arguments 75

USer process

int
length
socket
address
2 structure
o3
P
protecol
address
I Y

kernel

Figure 3.7 Socket address structure passed from process to kernel.

We will see in the next chapter that the datatype for the size of a socket address
structure is actually socklen_t and not int, but the POSIX specification rec-
ommends that socklen t bedefined asuint32_t.

Four functions, accept, recvirom, getsockname, and getpeername, pass a
socket address structure from the kernel to the process, the reverse direction
from the previous scenaric. Two of the arguments to these four functions are
the pointer to the socket address structure along with a pointer to an integer
containing the size of the structure, as in

struct sockaddr un cli; /* Unix domain */
socklen £ len;
-

len = sizeof(cli); /* len is a value */
getpeername {unixfd, {SA *) &cli, &len);
/* len may have changed */

The reason that the size changes from an infeger to be a pointer to an integer is
because the size is both a value when the function is called (it tells the kernel the
size of the structure so that the kernel does not write past the end of the struc-

_ ture when filling it in) and a result when the function returns (it tells the process

how much information the kernel actually stored in the structure). This type of
argument is called a value-result argument. Figure 3.8 shows this scenario.

76

Sockets Introduction Chapter 3

User process

int *

[1ength[

socket
address
structure

—

value
result

protocol
address

kernel

Figure 3.8 Socket address structure passed from kemel to process.

We will see an example of value-result arguments in Figure 4.11.

We have been talking about socket address structures being passed between the process and
the kernel. For an implementation such as 44BSD, where all the socket functions are system
calls within the kernel, this is correct. But in some implementations, notably System V, socket
functions are just library functions that execute as part of a normal user process. How these
functions interface with the protocol stack in the kernel is an implementation detail that nor-
mally does not affect us. Nevertheless, for simplicity, we will continue to talk about these
structures as being passed between the process and the kernel by functions such as bind and
connect. (We will see in Section C.1 that System V implementations do indeed pass socket
address structures between processes and the kernel, but as part of STREAMS messages.)

Two other functions pass socket address structures: recvmsg and sendmsg {Section 14.5}.
But, we will see that the length field is not a function argument but a structure member.

When using value-result arguments for the length of socket address structures, if
the socket address structure is fixed-length (Figure 3.6), the value returned by the kernel
will always be that fixed size: 16 for an IPv4 sockaddr_in and 28 for an IPv6
sockaddr_iné, for example. But with a variable-length socket address structure (e.g.,
a Unix domain sockaddr_un), the value returned can be less than the maximum size
of the structure (as we will see with Figure 15.2).

With network programming, the most common example of a value-result argument
is the length of a returned socket address structure. But, we will encounter other value-
result arguments in this text:

* The middle three arguments for the select function (Section 6.3)
* The length argument for the getsockopt function (Section 7.2)

Section 3.4 Byte Ordering Functions 77

3.4

* The msg_namelen and msg controllen members of the msghdr structure,
when used with recvmsg (Section 14.5)

* The 1fc_len member of the ifconf structure (Figure 17.2)
* The first of the two lenigth arguments for the sysctl function {Section 18.4)

Byte Ordering Functions

Consider a 16-bit integer that is made up of 2 bytes. There are two ways to store the
two bytes in memory: with the low-order byte at the starting address, known as
little-endian byte order, or with the high-order byte at the starting address, known as
big-endian byte order. We show these two formats in Figure 3.9.

_increasing memory
- addresses

address A+I address A
Little-endian byte order: 1 high-order byte low-order byte l

' '

|MSB 16-bit value LSB|
big-endian byte order: { high-order byte ‘ low-order byte I

address A address A+1

increasing memory
addresses o

iy

Figure 3.9 Little-endian byte order and big-endian byte order for a 16-bit integer.

In this figure, we show increasing memory addresses going from right to left in the top,
and from left to right in the bottom. We also show the most significant bit {MSB) as the
leftmost bit of the 16-bit value and the least significant bit (LSB) as the rightmost bit.

' The terms “little-endian” and “big-endian” indicate which end of the multibyte value, the little
end or the big end, is stored at the starting address of the value.

Unfortunately, there is no standard between these two byte orderings and we
encounter systems that use both formats. We refer to the byte ordering used by a given
system as the host byte order. The program shown in Figure 3.10 prints the host byte
order.

78 Sockets Introduction Chapter 3

i P——— introfbyteorder.c
2 int

3 main{int argc, char **argv)

4 {

5 union {

3 short s;

7 char ¢ [sizeof (short}];

8 } un;

9 un.s = 0x0102;

10 printf{"%s: ", CPU_VENDOR_OS);
11 if (sizeof (short) == 2) {

12 if {un.c[0] == 1 && un.c{l] == 2)

13 printf {"big-endian\n®);
14 else if (un.c[0] == 2 && un.c[i] == 1)

15 printf ("little-endian\n"};

16 alse

17 printf ("unknowni\n") ;

18 } else

19 printf{"sizeof (short) = sd\n", sizeof (short}):;
20 exit{0);
21 }

introfbyteorder.c

Figure 3.10 Program to determine host byte order.

We store the two-byte value 0x0102 in the short integer and then look at the two
consecutive bytes, ¢ [0] (the address A in Figure 3.9) and c[1] (the address A+1 in Fig-
ure 3.9), to determine the byte order.

The string CPU_VENDOR_0S is determined by the GNU autoconf program when
the software in this book is configured, and it identifies the CPU type, vendor, and OS
release. We show some examples here in the output from this program when run on the
various systems in Figure 1.16.

freebsd4 % byteorder
i386-unknown-freebsds.8: little-endian

macosx % byteorder
powerpc-apple-darwing.6: big-endian

freébsdS % byteorder
sparcé4 -unknown-£freebsds.1: big-endian

a

aix % byteorder
powerpc-ibm-aix5.1.0.0: big-endian

8.

hpux % byteorder
hppal.1i-hp-hpuxli.11l: big-endian

linux % byteorder
i586-pc-linux-gnu: little-endian

3

solaris % byteorder
sparc-sun-solaris2.9: big-endian

Section 3.4 Byte Ordering Functions 79

We have talked about the byte ordering of a 16-bit integer; obviously, the same dis-
cussion applies to a 32-bit integer.

There are currently a variety of systems that can change between little-endian and big-endian
byte ordering, sometimes at system reset, sometimes at run-time.

We must deal with these byte ordering differences as network programmers
because networking protocols must specify a network byte order. For example, in a TCP
segment, there is a 16-bit port number and a 32-bit IPv4 address. The sending protocol
stack and the receiving protocol stack must agree on the order in which the bytes of
these multibyte fields will be transmitted. The Internet protocols use big-endian byte
ordering for these multibyte integers.

In theory, an implementation could store the fields in a socket address structure in
host byte order and then convert to and from the network byte order when moving the
fields to and from the protocol headers, saving us from having to worry about this
detail. But, both history and the POSIX specification say that certain fields in the socket
address structures must be maintained in network byte order. Our concern is therefore
converting between host byte order and network byte order. We use the following four
functions to convert between these two byte orders.

#include <netinet/in.h>
uintlé_t htons (uintié_t hostl6bitvalue) ;
uint32_t htonl (uint32_t host32bitvelue) ;
Both return: value in network byte order
uintlé_t ntohs (uintlié_t neflbbitvalue) ;

uint32_ t ntohl (uint32_t net32bifvalue) ;

- Both return: value in host byte order

In the names of these functions, h stands for host, n stands for network, s stands for short,
and 1 stands for long. The terms “short” and “long” are historical artifacts from the
Digital VAX implementation of 4.2BSD. We should instead think of s as a 16-bit value
(such as a TCP or UDP port number) and 1 as a 32-bit value (such as an IPv4 address).
Indeed, on the 64-bit Digital Alpha, a long integer occupies 64 bits, yet the htonl and
ntohl functions operate on 32-bit values.

When using these functions, we do not care about the actual values (big-endian or
little-endian) for the host byte order and the network byte order. What we must do is
call the appropriate function to convert a given value between the host and network
byte order. On those systems that have the same byte ordering as the Internet protocols
(big-endian), these four functions are usually defined as null macros.

80

Sockets Introduction Chapter 3

3.5

We will talk more about the byte ordering problem, with respect to the data con-
tained in a network packet as opposed to the fields in the protocol headers, in Sec-
tion 5.18 and Exercise 5.8.

We have not yet defined the term “byte.” We use the term to mean an 8-bit quantity
since almost all current computer systems use 8-bit bytes. Most Internet standards use
the term octet instead of byte to mean an 8-bit quantity. This started in the early days of
TCP/IP because much of the early work was done on systems such as the DEC-10,
which did not use 8-bit bytes.

Another important convention in Internet standards is bit ordering. In many Inter-
net standards, you will see “pictures” of packets that look similar to the following (this
is the first 32 bits of the IPv4 header from RFC 791):

o} i 2 3
0123456788 012345678%2012345+67¢82301
P e b et e T R e s sl et
Iversion| IHL |Type of Service| Total Length |
B L ot el T e e T e Tt Tl el b it Sl e e Aok

This represents four bytes in the order in which they appear on the wire; the leftmost bit
is the most significant. However, the numbering starts with zero assigned to the most
significant bit. This is a notation that you should become familiar with to make it easier
to read protocol definitions in RFCs.

A comumon network programming error in the 1980s was to develop code on Sun workstations
(big-endian Motorola 68000s) and forget to call any of these four functions. The code worked
fine on these workstations, but would not work when ported to little~endian machines {(such as
VAXes).

Byte Manipulation Functions

There are two groups of functions that operate on multibyte fields, without interpreting
the data, and without assuming that the data is a null-terminated C string. We need
these types of functions when dealing with socket address structures because we need
to manipulate fields such as IP addresses, which can contain bytes of 0, but are not C
character strings. ‘The functions beginning with str (for string), defined by including
the <string.h> header, deal with null-terminated C character strings.

The first group of functions, whose names begin with b (for byte), are from 4.2BSD
and are still provided by almost any system that supports the socket functions. The sec-
ond group of functions, whose names begin with mem (for memory), are from the ANSI
C standard and are provided with any system that supports an ANSI C library.

We first show the Berkeley-derived functions, although the only one we use in this
text is bzero. (We use it because it has only two arguments and is easier to remember
than the three-argument memset function, as explained on p. 8.) You may encounter
the other two functions, bcopy and bemp, in existing applications.

