
Example: badpassword II: the recursening
Goal: Replace all e’s with 3’s

What is the base case?

What is the recursion case?

Trace how this program works 
with the input “feet”



Example: badpassword II: the recursening
rbadpassword(“feet”)

= “f” + rbadpassword(“eet”)
= “f” + [“3” + rbadpassword(“et”)]
= “f” + [“3” + [“3” + rbadpassword(“t”)]]
= “f” + [“3” + [“3” + [“t” + rbadpassword(“”)]]]
= “f” + [“3” + [“3” + [“t” + “”]]]
= “f” + [“3” + [“3” + “t”]]
= “f” + [“3” + “3t”]
= “f” + “33t”
= “f33t”



Example: replace all letters with “X”
Trace how this program works with the input “cat”



Example: replace all letters with “X”
rreplaceX(“cat”)

= “X” + rreplaceX(“at”)
= “X” + [“X” + rreplaceX(“t”)]
= “X” + [“X” + [“X” + rreplaceX(“”)]]
= “X” + [“X” + [“X” + “”]]
= “X” + [“X” + “X”]
= “X” + [“XX”]
= “XXX”



Example: Check if all elements are even
Trace the input when L = [2,4,3] and 
when L = [2,4,0]



Example: Check if all elements are even
rallEven([2,4,3])

= (2 % 2 == 0) and rallEven([4,3])
= (2 % 2 == 0) and [(4 % 2 == 0) and rallEven([3])]
= (2 % 2 == 0) and [(4 % 2 == 0) and [(3 % 2 == 0)]
= True and [True and False]
= True and [False]
= False



Example: Check if all elements are even
rallEven([2,4,0])

= (2 % 2 == 0) and rallEven([4,0])
= (2 % 2 == 0) and [(4 % 2 == 0) and rallEven([0])]
= (2 % 2 == 0) and [(4 % 2 == 0) and [(0 % 2 == 0)]
= True and [True and True]
= True and [True]
= True



Example: length of a string
Trace how this program works with 
the input “coffee”



Example: length of a string
strlen(“coffee”)

= 1 + strlen(“offee”)
= 1 + 1 + strlen(“ffee”)
= 1 + 1 + 1 + strlen(“fee”)
= 1 + 1 + 1 + 1 + strlen(“ee”)
= 1 + 1 + 1 + 1 + 1 + strlen(“e”)
= 1 + 1 + 1 + 1 + 1 + 1 + strlen(“”)
= 1 + 1 + 1 + 1 + 1 + 1 + 0
= 1 + 1 + 1 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 2
= 1 + 1 + 1 + 3
= 1 + 1 + 4
= 1 + 5
= 6



Recursive bullseye



Recursive stained glass window



Example: Recursive tower



Recursive binary search: rbinsearch(x, L)
Base cases:

if len(L) is 0, return False

if L[mid] == x, return True

Recursion case:

if x < L[mid], look in the left sublist

if x > L[mid], look in the right sublist



recursive binary search
What is the function stack for 

L = [1,3,7,9,13, 15] and x = 13?

What is the function stack for 

L = [1,3,7,9,13, 15] and x = 2?



L = [1,3,7,9,13, 15] and x = 13



L = [1,3,7,9,13, 15] and x = 2


