
Recursion
Idea: A function can call other functions, including itself!

Recursive functions are functions which call itself

Conceptually similar to a loop (because the same operation repeats each time
the function calls itself)

Appropriate for “self-similar” problems

Analogy:

We all have parents, who themselves have parents, who themselves have
parents, etc

Nested Russian dolls

Recursion example - building a tower with height 3
Iterative method

for each height from 1 to 3, place a block

Recursive method

to build a tower with height 3, first build a tower of height 2 and then add 1
block

How to design a recursive function
Define your base case

These are the cases where we won’t recurse (e.g. the function does not call
itself)

Prevents your recursion from running forever

Infinite recursion throws the error “maximum recursion depth reached”
Infinite recursion is also called a stack overflow -> your program has
used up all the function stacks allowed to your program!

For the tower example, the base cases are when the height of the tower is 0 or 1

How to design a recursive function
Define your recursion rule

What should you do when your base cases don’t apply?

Idea: Solve one step of the problem and then recurse on the remaining part of
the problem

Tower Example:

Rule: The build a tower with height N, first build a tower with height N-1. Then
add 1 block

Example: Recursive tower with height 3
To build a tower with height 3, first build a tower with height 2. Then add 1 block

How do we build a tower with height 2? Apply the rule again!

Example: Recursive tower with height 3
To build a tower with height 3, first build a tower with height 2. Then add 1 block

To build a tower with height 2, first build a tower with height 1. Then add 1 block

How do we build a tower with height 1? Apply the rule again!

Example: Recursive tower with height 3
To build a tower with height 3, first build a tower with height 2. Then add 1 block

To build a tower with height 2, first build a tower with height 1. Then add 1 block

To build a tower with height 1, place one block

base case! We know how to place a block!

1

Example: Recursive tower with height 3
To build a tower with height 3, first build a tower with height 2. Then add 1 block

To build a tower with height 2, first build a tower with height 1. Then add 1 block

We have a tower of height 1, so add one block

1

2

Example: Recursive tower with height 3
To build a tower with height 3, first build a tower with height 2. Then add 1 block

We have a tower of height 2, so add one block

1

2

3

Example: printing a list
Iterative approach: For each element in the list, print it

Recursive approach:

If the list is empty, return (base case)

If the list has one element, print it (base case)

Otherwise, print the first element of the list and then print a list with size N-1
(recursion rule)

Example: multiplying elements in a list
Recursive approach:

If the list is empty, return 1 (base case)

If the list has one element, return it (base case)

Otherwise, multiply the first element of the list with the product of the
remaining elements (recursion rule)

Example: Sum the numbers 1 to n
Recursive approach:

If n is 0, return 0 (base case)

If n is 1, return 1 (base case)

Otherwise, multiply the first element of the list with the product of the
remaining elements (recursion rule)

Example: Print hello n times
n is a counter in this example

Recursive approach:

If n is 0, do nothing (base case)

Otherwise, print “hello” and repeat n-1 more times (recursion rule)

If n = 3, can you draw
the function stack?

Can you find the error?
What is the output of
this program?

Infinite recursion

What happened?

How to fix?

Can you find the error?

We never reach the
base case because
we pass the whole
list!

We should pass L[1:]

