
Class terminology
member variables - the data that belongs to a class

Ex. PairCalculator has two member variables: value1 and value2

accessors - methods which expose member variables

Ex. the method getVal1 and getVal2 in PairCalculator

setters - methods which change the values of member variables

Exercise: try implementing setVal1 and setVal2 in PairCalculator

Best practice is to give access to member variables only through methods! This 
enforces encapsulation



Classes are types!
Ex. pair = PairCalculator(10,2) # pair has type PairCalculator

Ex. win = GraphWin(“Hi”, 200, 200) # win has type GraphWin

Ex. float, int, str, bool are called built-in types because they are included as part 
of the Python language. Classes allow us to define our own types!



Classes: constructor vs methods

The constructor (ctor) is invoked when you create an instance of a class

Defining the constructor

Using the constructor 
(uses class name!)



Classes: constructor vs methods

Methods determine what you can do with a class (aka the class interface)

Defining the method

Using the method
(All methods use “dot”)



Classes: method scope
Methods have member variables, parameters, and local variables in scope

tmp
self
self.value1
self.value2

self
self.value1
self.value2 (still in scope even though we don’t use it!!!)



Classes: method scope
Methods have member variables, parameters, and local variables in scope

1. self, a, b, self.value1 (self.value2 
has not been created yet!)

2. self, a, b, self.value1, self.value2



Classes: function stack
Method calls get their own function frame, same as non-class functions



Classes: function stack
Method calls get their own function frame, same as non-class functions



Classes: function stack
Method calls get their own function frame, same as non-class functions



Classes are mutable!
Recall: lists are mutable

So are classes! e.g. changes to a class 
inside a function persist after the function 
returns

Ex: testCalculator() in PairCalculator.py



Classes are mutable!



Classes are mutable!
Recall: lists are mutable

So are classes! e.g. changes to a class 
inside a function persist after the function 
returns

Ex: testCalculator() in PairCalculator.py


