
Classes
Recall: Classes define a type. Objects are a specific type

Analogy: Cat is a class of animal; My cat, Jersey, is an instance of cat.

Recall: Classes consist of data and methods

Advantages of classes

Modularity: break up application into objects (similar to TDD)

Encapsulation: Data is encapsulated inside classes; Use interface (e.g. methods)
to access data. => The class implementation can change without users being
aware of it, e.g. this is how classes support abstraction

Class syntax
class <className>:

 def __init__(self, param1, param2, …..):

 # initialize member variables

 # members are what we call the data in a class

 self.member1 = <initial value depends on type: int, str, etc>

 ….

 <other methods here: all should have self as first parameter!>

Class syntax
class <className>:

 def __init__(self, param1, param2, …..):

 # initialize member variables

 # members are what we call the data in a class

 self.member1 = <initial value depends on type: int, str, etc>

 ….

 <other methods here: all should have self as first parameter!>

__init__ is the constructor
method. This method is called
when you create an object, e.g.

 point = Point(x,y)

calls the __init__ function inside
class Point

Class syntax
class <className>:

 def __init__(self, param1, param2, …..):

 # initialize member variables

 # members are what we call the data in a class

 self.member1 = <initial value depends on type: int, str, etc>

 ….

 <other methods here: all should have self as first parameter!>

self is a special parameter that
represents the object that this
method “runs on”

Class syntax
class <className>:

 def __init__(self, param1, param2, …..):

 # initialize member variables

 # members are what we call the data in a class

 self.member1 = <initial value depends on type: int, str, etc>

 ….

 <other methods here: all should have self as first parameter!>

any other parameters (possibly
none) go after self

Class syntax
class <className>:

 def __init__(self, param1, param2, …..):

 # initialize member variables

 # members are what we call the data in a class

 self.member1 = <initial value depends on type: int, str, etc>

 ….

 <other methods here: all should have self as first parameter!>

We use self again to refer to the
object’s own data!!!

