
Big-O
Theoretical measure of how fast a program is

Benefits:

independent of platform (e.g. speed of hardware)

can compare performance of different algorithms BEFORE coding them up!

A function of the input size

Could also think about Tavg(N) or Tbest(N), but Big-O focuses on Tworst(N)

Rules of Big-O
Only care about dominant terms (constants don’t matter)

returns statements, conditional statements, assignments, arithmetic

-> all count as 1 step (a constant)

Estimate functions such as print and input as some K amount of steps

Example
def sum(N):

total = 0

for i in range(N):

total += i*i*i

return total

Analysis

assignment -> 1 step

1 add, 3 mults, updating i -> K steps

return -> 1 step

K*N + 2 total steps => O(N) function

repeated N
times

Big-O analysis: Consecutive statements add
def printSimple():

 i = 10

 turtle = True

 print(“hello”)

Analysis

assignment -> 1 step

assignment -> 1 step

print -> K steps

K + 2 total steps => O(1) function

constant time

doesn’t change
based on input!

Big-O analysis: for/while loops
#steps = statements inside the loop multiplied by the #iterations

def foo(N):

for i in range(N):

print(i)

Analysis

print -> K steps

K*N steps => O(N)

repeated N
times

Analysis

print -> K steps

N*N steps => O(N^2)

Big-O analysis: Nested for loops
Analyze them inside-out, #steps = product of the sizes of the for loops

def MultTable(N):

for i in range(N):

for j in range(N):

print(i*j)
repeated
N times

repeated
N times

Big-O analysis: If/Else
#steps is the larger of either the first or second case

Analysis

print -> K1 steps

print -> K2 steps

N*K1 or K2 steps => O(N)

if a > b:

for i in range(N):

print(i*j)

else:

print(“No!”)

repeated N
times

repeated N
times

Example Analysis

assignment -> 1 step

append,etc -> K1 steps

assignment, arithmetic,

etc -> K2 steps

1 + N*K1 + N*10*K2 steps => O(N)

total = []

for i in range(N):

total.append(0)

for i in range(N):

for j in range(10):

total[i] += j*j
repeated
10 times

repeated N
times

