
Search
Common search problems:

Does the list contain x? Return True or False

Where is x located in the list? Return the index, or -1 if not found

How many times is x in the list? Returns a non-negative integer

Find and replace an item

What is the closest item to x?

Search
Python examples:

“apple” in [“banana”, “orange”, “carrot”] -> returns False

99 in [23, 77, -34, 45, 45, 99, -4] -> returns True

[23, 77, -34, 45, 45, 99, -4].index(99) -> Returns 5

We will implement our own search algorithms!

Idea:

Go through each item in a list
and check if it matches our
search key

Solution 1:

How many steps does it take to
find 99?

How many steps does it take to
find 77?

Linear Search

Solution 2: How is this solution
different from the previous
solution?

How many steps does it take to
find 99?

How many steps does it take to
find 77?

Linear Search

Why doesn’t this program
work?

Linear Search

Performance
How long does it a take a program to run?

We can measure it using time

Performance is “platform-specific”, e.g. depends on hardware

Newer hardware is faster than slower hardware

import time
…
startTime = time.time() # Returns seconds
runAlgorithm()
endTime = time.time()
algorithmDuration = endTime - startTime

Running time
How can we have measure the speed of an algorithm in a platform-independent
way?

Idea: Count the number of steps the algorithm has to take

How do the number of steps increase as we increase the input size?

Ex: For linear search, the speed of the algorithm depends on the list size

-> a list with more elements in it will take longer to search

-> specifically, the number of steps grows linearly with the list size

Linear search time grows linearly with list size

Size of the list from 100 to 10K

Ti
m

e
in

 m
ill

is
ec

on
ds

This graph is based on
simulations of solution 2!

Why is it so jaggy?

Big-O notation
We use the term “big-oh” to indicate the rough number of steps for an algorithm

Linear search is an “order N algorithm”, signified as O(N)

N represents the number of items in the list

Big-O notation ignores whether the number of steps is actually 3N or N+10

In practice constants matter (N is 3 times faster than 3N) but for
understanding how an algorithm scales with data, we only care about the
dominant term. E.g. when N is really big, the constants become
insignificant!

Can we do better than O(N)?
Yes! If the list is sorted we can use Binary Search

(If the list isn’t sorted, linear search is are only option!)

Binary Search
Idea: Eliminate half the data from consideration each step

Example: Search for 44 in the numbers between 1 and 100

Step 1: Is 44 bigger or smaller than 50? Smaller -> Check left half [1, 49]
Step 2: Is 44 bigger or smaller than 25? Bigger -> Check right [26,49]
Step 3: Is 44 bigger or smaller than 37? Bigger -> Check right [38, 49]
Step 4: Is 44 bigger or smaller than 43? Bigger -> Check right [44,49]
Step 5: Is 44 bigger or smaller than 46? Smaller -> Check left [44,45]
Step 6: Is 44 bigger or smaller than 44? It’s equal!!! FOUND IT

How many steps would this take using linear search? 44!

NOTE: The midpoint in an
interval [a,b] is (a+b)/2.
To convert to an integer,
cast to an int!

Already
checked
50, so
exclude
it from
next
interval

Example: Search for 99 in [-20,-4,44,58,99,145]
To perform binary search in a list, we use list indices to keep track of intervals

Let low be the beginning of an interval

Let high be the end of an interval

Let mid = int((high+low)/2) be the middle of the interval

How many steps does it take?

Example: Search for 99 in [-20,-4,44,58,99,145]

-20 -4 44 58 99 145

0 1 2 3 4 5

What is low, mid, and high to start?

Example: Search for 99 in [-20,-4,44,58,99,145]

-20 -4 44 58 99 145

0 1 2 3 4 5

low
0

high
5

mid
2

L[mid] = 44. What should we do next?

Example: Search for 99 in [-20,-4,44,58,99,145]

-20 -4 44 58 99 145

0 1 2 3 4 5

low
3

high
5

mid
4

L[mid] = 99. FOUND IT!

Example: Search for “b” in [“a”,”b”,”c”,”d”,”e”]

a b c d e

0 1 2 3 4

What is low, mid, and high to start?

Example: Search for “b” in [“a”,”b”,”c”,”d”,”e”]

low
0

high
4

mid
2

L[mid] = “c”. What should we do next?

a b c d e

0 1 2 3 4

Example: Search for “b” in [“a”,”b”,”c”,”d”,”e”]

low
0

high
1

What should mid be?

a b c d e

0 1 2 3 4

Example: Search for “b” in [“a”,”b”,”c”,”d”,”e”]

low
0

high
1

L[mid] = “a” What should our next step be?

a b c d e

0 1 2 3 4

mid
0

low
1

mid
1

Example: Search for “b” in [“a”,”b”,”c”,”d”,”e”]

high
1

mid and high point to the same index! L[mid] = “b”

a b c d e

0 1 2 3 4

FOUND IT!

Binary search partial algorithm
Search(x, L):

low = 0
high = len(L)-1
for each step:

mid = int((high+low)/2)
#Check L[mid]
if x < L[mid]: # Search left

high = mid-1
elif x > L[mid]: # Search right

low = mid+1
else: # x == L[mid]

return True

When do we stop?

What happens if L
doesn’t contain x?

Example: Search for 0 in [-20,-4,44,58,99,145]
What happens when an item isn’t in the list?!

-20 -4 44 58 99 145

0 1 2 3 4 5

low
0

high
5

mid
2

L[mid] = 44. What should we do next?

Example: Search for 0 in [-20,-4,44,58,99,145]

-20 -4 44 58 99 145

0 1 2 3 4 5

low
0

mid
0

high
1

L[mid] = -20. What happens next? Apply the algorithm..

Example: Search for 0 in [-20,-4,44,58,99,145]

-20 -4 44 58 99 145

0 1 2 3 4

high
1

5

low
1

L[mid] = -4. What should we do next? Apply the algorithm..

mid
1

Example: Search for 0 in [-20,-4,44,58,99,145]

-20 -4 44 58 99 145

0 1 2 3 4 5

low
2

high
1

The markers high and low switched places!!

Binary search algorithm
Search(x, L):

low = 0
high = len(L)-1
while low <= high:

mid = int((high+low)/2)
if x < L[mid]: # Search left

high = mid-1
elif x > L[mid]: # Search right

low = mid+1
else: # x == L[mid]

return True
return False

Example: Binary search
python3 binarysimple.py

low/mid/high 0 2 5
low/mid/high 3 4 5
Num steps: 2
Found 99? True

low/mid/high 0 2 4
low/mid/high 0 0 1
low/mid/high 1 1 1
Num steps: 3
Found b? True

low/mid/high 0 2 5
low/mid/high 0 0 1
low/mid/high 1 1 1
Num steps: 3
Found 0? False

Binary search runtime performance
Everytime we make a step, we divide the problem in half.

Suppose we have N items in the list

Step 1: N/2

Step 2: N/2/2 = N/22

Step 2: N/2/2/2 = N/23

….

Step k: N/2k

O(log2N) based algorithm!

[We usually just say O(log N)]

Binary search time grows logarithmically with list size

Size of the list from 100 to 10K

Ti
m

e
in

 m
ill

is
ec

on
ds

Remember linear
search?

Example: A
program which
simulates binary
search for different
sized lists and
different inputs

(linear search would
work similarly)

