
Top Down Design
Methodology for writing larger programs

Step 1: Divide problem into smaller, easy-to-solve subproblems

Compile list of features

Sketch high-level algorithm on paper

Sketch program (in code) using stubs (e.g placeholder functions)

Step 2: Implement program bottom-up

Use incremental development

Refine design in step 1 and re-stub as necessary



Goals of TDD
Good design makes your program

easy to build and test incrementally

easy to debug

well-organized

easy for a human to read

resistant to bugs

Rules of thumb:

NO CUT AND PASTED CODE BLOCKS!

Functions should do a single, clearly 
defined task

Algorithms should be clear from function 
and variable names



Top-down design - Analogies
Approach is the same as any you would take with a large project:

Applying to schools

Organizing an event

Building a piece of furniture

Writing a paper



TDD Example - checkbook
Step 1: List features

- Keep track of current balance
- Allow user to make deposits
- Allow user to make withdrawals
- Prevent user from withdrawing more than they have
- Print summary with current balance
- Press ‘q’ to quit



TDD Example - checkbook
Step 2: Sketch high-level algorithm on paper

 Goal: subdivide program into small, easy steps

Get the starting balance from the user
while not timeToQuit:

Ask the user what they want to do (withdraw,deposit,quit)
if withdraw:

withdraw
elif deposit:

deposit
elif quit:

timeToQuit = True
else:

Report an unrecognized command

This is a small example, so 
we have only two functions 
we need to stub: withdraw() 
and deposit()



TDD Example - checkbook
Step 3: Sketch program using 
stubs

NOTE: There are multiple 
good potential designs (but 
watch out because also many 
bad designs that will make 
your life miserable!)

NOTE: This program runs!



TDD Example - checkbook
Step 3: Sketch program using 
stubs

NOTE: There are multiple 
good potential designs (but 
watch out because also many 
bad designs that will make 
your life miserable!)

NOTE: This program runs!



Code stubs - best practices
Your program with stubs should still run

Your stubs should have comments describing their function

Your stubs should have the arguments and return type that you expect it to use

All the stubs you define should be used somewhere in your program



TDD Example - checkbook
Bottom-up Implementation

Implement and test each stub one 
at a time! In class, we started with 
deposit and then implemented 
withdrawal


