
File IO
Refers to reading and writing files

IO - Input/Output

Motivation

Real applications need to process lots of data

Data needs to persist beyond the lifetime of the program

Example files: video, spreadsheets, blogs, images, and more!

Files
Two primary types

Text files - sequences of characters

You can read text files in an editor such as Atom!

Binary files - general data (including floats, strings, and more) that can
represent anything

To read a binary file, your program must understand the format

Example: your browser can run video files (ogv) but Atom can’t!

Reading files in code
Step 1: Open the file

Step 2: Read the contents

Usually done line by line!

Step 3: Close the file

infile = open(<name>, <mode>)

for line in infile.readlines():
print(line)

infile.close()

file object mode can be “r” for reading;
“w” for writing!

Example: Shopping
List - version 1.0

$ python3 shopping.py
apples

bananas

flour

soap

cereal

Whitespace
When we read and write files, we need to be aware of whitespace characters!

“\n”, “\r” newlines

“\t” tab

Use the string module function, strip(), to remove whitespace characters!

for line in infile.readlines():
 cleanLine = line.strip()
 print(cleanLine)

Example: Shopping
List - version 2.0

Stripping the line removes the
extra newline character!

Example: Average
grade - read and
compute

Tip: Copy and paste the values into a
spreadsheet program to make sure
your calculations are correct!

Example: Average
grade - alternate
solution

How does this differ from the
previous? (Two changes)

Writing files in code
Step 1: Open the file

Step 2: Write the contents

Need to explicitly add newlines!

Step 3: Close the file (Important!)

outfile = open(<name>, <mode>)

outfile.write(value+”\n”)

outfile.close()

file object mode can be “r” for reading;
“w” for writing!

Example: Average
grade - save to file

Parsing
Reading and converting text input into data types which we can use in our
program

Example: Parse the string “10,90,34” so we can compute the total

valueStrings = “10,90,34”

Use split to convert the above string to a list of strings
valueStringList = valueStrings.split(“,”)

Convert each of the items in our list to an integer and add it to a total
total = 0
for i in range(len(valueStringList)):
 value = int(valueStringList[i])
 total = total + value

Example: Compute
averages for multiple
people

Example: Compute
averages for multiple
people - and save to
file!

Solution 1: Save the
results in a list and then
print

Example: Compute
averages for multiple
people - and save to
file!

Solution 2: Write the
results right away

Splitting strings
listVariable = stringVariable.split(<delimiter>)

NOTE: Splitting strings removes the delimiter character and separates the
stringVariable into sub strings!

>>> import string
>>> valueString = "40,50"
>>> valueList = valueString.split(",")
>>> valueList
['40', '50']
>>> phrase = "around-the-world"
>>> phrase.split("-")
['around', 'the', 'world']
>>> word = "banana"
>>> word.split("a")
['b', 'n', 'n', '']

