
Immutable types
strings, integers, floats, and booleans are immutable types

A mutable object can be changed after it is created, and an immutable object
can't

Case Study: if you reassign an immutable type in a function, the change doesn’t
last beyond the lifetime of the function (see add3.py for an example)

Lists
Lists are an example of a mutable data types

Lists support

+ concatenation

* repetition

len()

[] indexing

append() # adds an element to the end of the list (changes the list!!!)

The same operations as strings! But
one important difference: [] can be
used to both inspect and change
values in the list. For strings, [] can only
inspect

Example: addVal.py
You can change the values in a list using
indexing, unlike strings

>>> word = "test"
>>> word[2] = "t"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item
assignment
>>> wordList = list(word)
>>> wordList[2] = "t"
>>> wordList
['t', 'e', 't', 't']
>>>

