
Functions
Idea: Helps us build bigger programs by collecting code into re-useable units

Real Life Examples:

Capsule Coffee Maker - place a capsule and water (input) and get coffee
(output)

Vending machine - place money and set choice (input) and get a treat
(output)

Functions should perform a clearly defined, specific task

“Define once and use forever!”

Functions
Good functions act like a blackbox - the user doesn’t need to know how the
function works to use it

Functions are abstractions: they abstract the details so we can focus on the big
picture

Functions allow us to write modular code. Modular code is organized in clearly
defined sub-components. Each sub-component can be designed, implemented
and tested independently

Analogies: A car consists of independent modules such as lights, steering
column, and brakes. A book consists of modules which build up such as
sentences, paragraphs, sections, and chapters.

Function syntax
Syntax:

def <name>(<param1>,<param2>,...,<paramN>):

<body>

return <value>

colon

indent
important

returning a value is
optional

parameters, or arguments,
or inputs. You can have
any number of these,
including none!

Aside - Terminology
Programmers use the terms void, None, and NULL to indicate nothing

Ex: a function with no return value is sometimes called a void function

Ex. Python3 defines a special datatype called NoneType to represent variables
that have nothing inside them

Function examples
You’ve been using functions
already: min(), Math.sqrt(),
main(), len(), input()

But you can also define your
own!

Advantages of functions
1. Re-useability - “define once and use forever”
2. Modularity - “top-down design”

a. Split big problems into small, easy-to-solve problems

3. Easier to debug and maintain
a. Cut & paste => bugs have to be fixed everywhere. Code in a function only has to be fixed

once

4. Abstraction = “black box”
a. Users do not need to know how it works in order to use it

