Functions

Idea: Helps us build bigger programs by collecting code into re-useable units
Real Life Examples:

Capsule Coffee Maker - place a capsule and water (input) and get coffee
(output)

Vending machine - place money and set choice (input) and get a treat
(output)

Functions should perform a clearly defined, specific task

“Define once and use forever!”

Functions

Good functions act like a blackbox - the user doesn’t need to know how the
function works to use it

Functions are abstractions: they abstract the details so we can focus on the big
picture

Functions allow us to write modular code. Modular code is organized in clearly
defined sub-components. Each sub-component can be designed, implemented
and tested independently

Analogies: A car consists of independent modules such as lights, steering
column, and brakes. A book consists of modules which build up such as
sentences, paragraphs, sections, and chapters.

Function syntax

Syntax:

def <name>(<param1>,<param2>,...,.<paramN>): —— colon

<body>
< >
return <value \ parameters, or arguments,
or inputs. You can have
returning a value is any number of these,
optional including none!

indent
important

Aside - Terminology

Programmers use the terms void, None, and NULL to indicate nothing
Ex: a function with no return value is sometimes called a void function

Ex. Python3 defines a special datatype called NoneType to represent variables
that have nothing inside them

@&l Terminal - samplefunctions.py (~/classes/cs21/f18/library.git/inclass/w04) - VIM | & o [a] 2
File Edit View Terminal Tabs Help

Function examples

You've been using functions

print(, message)
print(-——--

already: min(), Math.sqrt(),
main(), len(), input() ' e ras

area = math.pi *
return area

But you can also define your
own! :

return x + y

main():

Functions can call other Functions
greeting = "Wel e
printMessage(greeting)

radius = float(input("Enter a
circleArea =
print(F: cle with radius %.2f is %.2f"%(radius, circleArea))

goodbye = "G
printMessage(goodbye)

main()

Advantages of functions

1. Re-useability - “define once and use forever”
2. Modularity - “top-down design”

a. Split big problems into small, easy-to-solve problems
3. Easier to debug and maintain
a. Cut & paste => bugs have to be fixed everywhere. Code in a function only has to be fixed
once

4. Abstraction = “black box”
a. Users do not need to know how it works in order to use it

