
Week 2

Incremental Development

Arithmetic Revisited

For loops

Accumulator Pattern

String operators

Incremental Development
Makes programming much easier

Idea: Complete program in steps. Make sure current step works before moving on
to the next step

Incremental development example: Adding two numbers

Step 1: Implement user input and test

Step 2: Add both numbers and test

Step 3: Put everything together and clean up

Incremental Development
Makes programming much easier

Idea: Complete program in steps. Make sure current step works before moving on
to the next step

Incremental development example: Adding two numbers

Step 1: Implement user input and test

Step 2: Add both numbers and test

Step 3: Put everything together and clean up

Has several steps!

- Call input() to
prompt user

- Convert from
string to integer

- Save the result in
a variable

Incremental Development
Makes programming much easier

Idea: Complete program in steps. Make sure current step works before moving on
to the next step

Incremental development example: Adding two numbers

Step 1: Implement user input and test

Step 2: Add both numbers and test

Step 3: Put everything together and clean up

Two steps:

- Add first and
second number

- Save result in a
variable

Incremental Development
Makes programming much easier

Idea: Complete program in steps. Make sure current step works before moving on
to the next step

Incremental development example: Adding two numbers

Step 1: Implement user input and test

Step 2: Add both numbers and test

Step 3: Put everything together and clean up

- Remove print
statements for
intermediate
values

- Comment code

- Output final
results with
desired formatting

Arithmetic Revisited
Type conversions can can happen automatically: int & float → float

Other useful functions: abs(), min(), max(), pow(), ** (exponentiate), % (modulo)

Operator precedence: same as math, left to right, mult/div before add/sub

4 * (2 + 3) != 4*2 + 3

When in doubt, use parentheses!

More powerful math functions are in the math module (e.g. using import math)

% Modulo
Returns the remainder of integer division

ex. 6 % 2 = 0 because 6/2 = 3 with remainder 0

ex. 6 % 4 = 2 because 6/4 = 1 with remainder 2

Question: How can we use % to determine is a number is even or odd?

Compute the tax
Compute the cost of an item after tax

The user should input the base price and the tax

The program should output the total cost

 almond[w01]$ python3 tax.py

Enter the cost: 10

Enter the tax: 0.3

The total is 13.0

Compute the tax
Use an incremental development approach

1. Specify the algorithm on paper (4 steps)
a. What types do we need?
b. List some test cases (e.g. how can we tell that the program is working)?

2. Write your program in steps
a. Implement your input and check it
b. Implement your computation and check it
c. Put it all together and cleanup

almond[w01]$ python3 tax.py

Enter the cost: 10

Enter the tax: 0.3

The total is 13.0

Loops
Idea: repeat a set of instructions

Two kinds: for loops and while loops. Let’s talk about for loops first!

Real life examples

For 30 seconds, stir the pot

For each name on the list, read it aloud

In code:
for i in range(5):

print(i)
for i in [1,2,3,4,5]:

print(i)

Loops - Syntax

[NOTE: Syntax means the rules of a language]

for <var> in <sequence>:

<body>

<var>: stores the current iteration, e.g. “which step”
<sequence>: set of values that <var> takes on
<body>: repeated for every element in <sequence>

Indent is important!!

colon is important!

Loops - Example
1. i is initialized to first item in the

sequence. In this example, i = 1
2. We execute the body. In this example,

we print(i). Because i = 1, the number
1 is output to the console.

3. We then update i to the next item in
the sequence
a. If there are no more items, we exit the loop
b. Otherwise, we execute the body with the

current value of i

for i in [1,2,3,4,5]:
print(i)

Loops - Specifying sequences
Two ways to specify a sequence:

[1,2,3,4,5] ← List, Syntax uses brackets [] and commas to separate elements

range(5) ← Function which returns a list having 5 elements, namely [0,1,2,3,4]

NOTE: you’ll notice that range uses 0-based indexing! If this seems weird,
you’re not wrong. The reason we start counting at 0 is related to how
memory is laid out. It will become more clear (and comfortable) over time!

for i in [1,2,3,4,5]:
print(i)

for i in range(5):
print(i)

Accumulator pattern
Idea: have a variable which accumulates a value over multiple iterations

Examples: a bank balance, counting cookies

Algorithm

1. Initialize an accumulator variable

2. For each item in the sequence

a. Update the accumulator

3. Use the accumulator

Example - Compute the total
Remember the algorithm to compute the total we talked about the first day?

The total starts at zero

Repeat the following steps 5 times:

Listen for the next number

Update total using the new number

Say what the total was

Example - Compute the total
Let’s implement it using an accumulator pattern and incremental development!

The total starts at zero

Repeat the following steps 5 times:

Listen for the next number

Update total using the new number

Say what the total was

● What are we accumulating? total

● What does the accumulator equal to start?

0

● How to update the accumulator each loop

iteration? total = total + new_value

● How many times should we loop? 5

● How to get the input? Ask User

● How do we know if our accumulator is

correct? Check total with known values

Aside: Shorthand assignments
Idea: Because accumulators are so common in programming, most languages
define the following operators (referred to as syntactic sugar)

cost += 10 ← the same as cost = cost + 10

cost -= 10 ← the same as cost = cost - 10

cost *= 10 ← the same as cost = cost * 10

cost /= 10 ← the same as cost = cost / 10

Exercise - Implement factorial
The factorial operator n! is defined as follows for positive integers

n! = n * (n-1) * (n-2) * … (2) * (1)

where one and zero are special cases:

1! = 1 and 0! = 1

Examples:

8! = 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 40320

0! = 1

● What are we accumulating?

● What does the accumulator equal to start?

● How to update the accumulator each loop

iteration?

● How many times should we loop?

● How to get the input?

● How do we know if our accumulator is

correct?

Factorial accumulator
● What are we accumulating? product

● What does the accumulator equal to start? 1

● How to update the accumulator each loop iteration? product = product * nextValue

● How many times should we loop? N times

● How to get the input? Ask the user for N

● How do we know if our accumulator is correct? Check example values work

Factorial algorithm
Ask the user for a number N

Compute the factorial

Initialize accumulator variable

Repeat N times

Multiply accumulator by next value

(For debugging) Output the accumulator

Output the result

How do values change as we iterate over the loop?

Iteration i N product = product * N

1 0 3 product = 1 * 3 = 3

2 1 2 product = 3 * 2 = 6

3 2 1 product = 6 * 1 = 6

N = 3
product = 1

How do values change as we iterate over the loop?

Iteration i N product = product * (N-i)

1 0 3 product = 1 * (3 - 0) = 3

2 1 3 product = 3 * (3 - 1) = 6

3 2 3 product = 6 * (3 - 2) = 6

N = 3
product = 1

How do values change as we iterate over the loop?

Iteration i product = product * i

1 1 product = 1 * 1 = 1

2 2 product = 1 * 2 = 2

3 3 product = 2 * 3 = 6

N = 3
product = 1

Strings revisited
Strings support operators, just like numbers do

* represents repetition

+ represents concatenation

len(text) returns the number of characters in a string

[] index operators, which use 0-based indexing

“” is an empty string

Strings are immutable, which means that you can’t change the value of a string
after it’s created

Exercise - Output the requested character
Ask the user for a string

Output the first character, the last character, and the middle character

Hint: Use indexing $ python3 requestChar.py
Enter a word: laughter
first: l
middle: h
last: r

$ python3 requestChar.py
Enter a word: bee bop
first: b
middle:
last: p

