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Abstract—The ubiquity of multicore processors, cloud com-
puting, and hardware accelerators have elevated parallel and
distributed computing (PDC) topics into fundamental building
blocks of the undergraduate CS curriculum. Therefore, it is
increasingly important for students to learn a common core of
introductory PDC topics and develop parallel thinking skills
early in their CS studies. We present the curricular design,
pedagogy, and goals of an introductory-level course on com-
puter systems that introduces parallel computing to students
who have only a CS1 background. Our course focuses on three
curricular goals that serve to integrate the ACM-IEEE TCPP
guidelines throughout: a vertical slice through the computer
of how it runs a program; evaluating system costs associated
with running a program; and taking advantage of the power
of parallel computing. We elaborate on the goals and details
of our course’s key modules, and we discuss our pedagogical
approach that includes active-learning techniques. We find that
the PDC foundation gained through early exposure in this
course helps students gain confidence in their ability to expand
and apply their understanding of PDC concepts throughout
their CS education.
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curriculum design.

I. INTRODUCTION

With the increasing ubiquity and application of parallel
and distributed computing (PDC), it is imperative to ex-
pose students to PDC topics early and often in their CS
instruction to provide them with the skills to prepare them
for the CS workforce. The ACM-IEEE CS curriculum [1]
and NSF/IEEE-TCPP [22] provide guidance on introducing
specific PDC knowledge and skills early and throughout the
undergraduate curriculum.

As we move from isolated or optional PDC coverage
in upper-level electives to more frequent and pervasive
coverage, determining how PDC can be incorporated early
presents one of the biggest curricular challenges.

We present the design, goals, and outcomes of Introduc-
tion to Computer Systems [5] (CS 31), an introductory-level
course on computer systems that first introduces parallelism.
CS 31 is a required introductory course in our curriculum
that builds on a CS1 prerequisite. As a required course taught
every semester since 2012, CS 31 ensures that all students
will have an introduction to parallelism early.

The coverage of CS 31 topics ensures an early exposure
to a common core of computer organization, systems, and
parallel computing concepts. Students and faculty further
leverage this introduction and common core to explore more

Table I: Main TCCP topics covered in CS 31.

TCPP Category CS 31 Topics
Pervasive concurrency, asynchrony, locality, perfor-

mance in many contexts
Architecture multicore, caching, latency, bandwidth,

atomicity, consistency, coherency, pipeling,
instruction execution, memory hierarchy,
multithreading, buses, process ID, interrupts

Programming shared memory parallelization, pthreads,
critical sections, producer-consumer, per-
formance improvement, synchronization,
deadlock, race conditions, memory data lay-
out, spatial and temporal locality, signals

Algorithms dependencies, space/memory, speedup,
Amdahl’s Law, synchronization, efficiency

PDC topics in upper-level courses. An early PDC introduc-
tion also helps to meet a broader goal that students are
exposed to PDC topics repeatedly, and in different contexts,
throughout the curriculum. CS 31 covers many topics from
the TCPP curriculum, shown in Table I, spanning Pervasive,
Architecture, Programming, and Algorithms areas.

II. CURRICULUM OVERVIEW AND GOALS

Our introductory sequence consists of three courses: our
CS1 course in Python; CS 31, an introduction to computer
systems; and CS 35, data structures and algorithms. Students
can take CS 31 and CS 35 in any order or concurrently; CS1
is the only prerequisite for both.

CS 31 is a broad introduction to computer systems and
to parallelization focusing on parallelism for multicore sys-
tems. Its curriculum is designed around three main themes.

The first theme is understanding how a computer runs
a program. This content describes a vertical slice through
the computer that examines how the high-level language C
is compiled to binary instructions that are executed on CPU
circuitry. The course also examines the role of the Operating
System (OS) and its abstractions in running programs.

The second theme evaluates systems costs associated
with running a program. We focus primarily on the perfor-
mance effects of the memory hierarchy, but we also discuss
other system costs including the OS’s role in scheduling
for efficiency as well as synchronization and parallelization
overheads.

The third theme is taking advantage of the power of
parallel computing. We focus this introduction on shared



memory parallelism. This fits well with our model of “the
computer” that we use throughout the course, where students
become familiar with the details of both single core and
multicore computers. We stress “thinking in parallel” as
we cover race conditions, synchronization, deadlock, speed-
up, the producer-consumer problem, and designing and
implementing parallel programs in pthreads.

Beyond our primary themes, students also become profi-
cient in implementing solutions to large problems in C and
in using GDB and Valgrind to debug and examine program
execution state.

Course Structure. The structure of CS 31 includes
lectures, larger programming lab assignments, written home-
works, in-class group exercises, and two course exams.
CS 31 also includes a weekly 90 minute lab section cover-
ing programming tools and providing hands on experience
applying lecture topics.

We use the free, online “Dive into Systems” [15] textbook,
written by two of the co-authors and a collaborator from
West Point. Motivated by a lack of options, the book covers
breadth of topics in CS 31 at an appropriate introductory
depth. In addition to its use in CS 31, the book is designed
to be a useful resource to a broad range of courses that
introduce computer systems, computer organization, and
parallel computing [16].

CS 31 class meetings consist of lectures punctuated by
several active learning exercises in small groups. We adopt
the peer instruction [19] teaching model and use student
clicker devices to poll the class. We present a carefully
crafted question and first ask the students to answer it
individually. For full participation credit, the students must
commit to an answer via the clicker, but we don’t grade
it for correctness. Next, we give students 2–3 minutes to
discuss the question in small groups and then respond again
via their clickers, this time answering as a group. Finally, the
instructor holds a full-class discussion, calling on volunteers
to share what their group discussed.

Prior to class, we ask that students read brief introductory
material from a textbook, and we hold daily (graded) reading
quizzes that students answer via their clicker. These quizzes
are designed to be answerable by students who did the
reading, even if they don’t yet hold a deep understanding
of the content.

During our weekly lab sessions, we begin by working
through warm-up exercises. As the first systems course that
students take, our aim with the in-lab instruction and warm-
up exercises is to provide students with a way to experiment,
learn, and build confidence in C programming and system
top-down design without having the pressure of a graded
component. We introduce C programming environments and
practice using C compiling and debugging tools (makefiles,
GDB, and Valgrind).

Swarthmore has a student mentoring program [18] for
each of its introductory sequence courses, including CS 31.

CS 31 student mentors primarily help students during
weekly lab meetings, and during two weekly dedicated
sessions that they run for CS 31-specific help. We occasion-
ally use student mentors to help with some in-class group
activities too.

III. CS31 DETAILS

In a typical course schedule, CS 31 starts with binary
data representation and then introduces C programming.
Next, we introduce computer architecture and assembly.
We then provide an overview of the memory hierarchy
and the operating system. Finally, we cover shared memory
parallelism, pthreads, and synchronization primitives. In this
section, we discuss our focus and coverage of the main
course topics and discuss details of the structure of the
course.

A. Course Contents

C programming: CS 31 offers our students their first
formal introduction to a systems programming language. We
demonstrate C programming basics in the first two weeks of
the course, and we gradually build students’ competence by
introducing new C semantics in tandem with the systems
principles we cover each week. Our goal in CS 31 is not to
provide an exhaustive C programming course, but rather,
we emphasize the broader systems concepts and use C
programming as a means to enable and further students’
understanding.

We begin our C introduction by contrasting the high-level
programming paradigms in C and Python, with topics such
as explicit type declaration, differences between an inter-
preted and a compiled language, and memory management
(allocating and freeing dynamic memory).

In introducing C, we initially describe variable scope,
function syntax, representation of Boolean logic, primitive
data types, conditionals, and loops. We also provide a
preliminary introduction to composite data types (arrays,
strings, and structs), their layout in memory, and performing
basic I/O. Our introductory C lab assignment (Lab 2 in
section III-B) introduces students to type declarations, C I/O
and writing simple C functions.

As students get more proficient with C, we introduce a
process’s memory regions (the text, data, heap, and stack).
We discuss the distinct features of each region and the OS’s
role in managing memory and ensuring the integrity of the
stack and heap. Once we set the context of understand-
ing program memory regions, we introduce pointers. We
describe pointer types, NULL pointers, pointer declaration,
initialization, assignment, and dereferencing. We introduce
dynamic memory allocation, specifying the amount of mem-
ory requested, and freeing memory. This context gives us
a natural segue into discussing C’s philosophy of memory
management, memory leaks, and segmentation violations.
We aim to provide as many in-class and lab examples as



possible to familiarize students with understanding program
memory regions, pointers, arrays, and string manipulation.
We particularly emphasize the use of Valgrind for memory
debugging. In some iterations of this course, we offer an
additional string assignment (Lab 7), to help students gain
more familiarity with using pointers, strings, and dynamic
memory allocation.

In support of CS 31’s PDC goals, we cover system calls
(fork, exec, wait, and exit) and signals in conjunction
with our introduction to operating systems. The details are
described further under the sub-section Operating Systems.
Once we introduce these concepts, we provide multiple
opportunities for students to practice using these system calls
during in-class examples and homeworks. We ask students
to implement a Unix shell (Labs 8 and 9). Similarly, we
introduce pthreads programming in the context of paralleliz-
ing applications, which we describe in more detail in the
sub-sections Shared Memory Parallelism. For this section
of the course, students implement two versions of Conway’s
Game of Life. In the first, the entire program runs serially
(Lab 6), and in the second, students parallelize their earlier
code using pthreads (Lab 10).

Binary Representation. Our first main “systems” topic
is binary representation of C types and binary arithmetic.
This is the first step in understanding how a C program
is run by the underlying system. We focus primarily on
C signed and unsigned values, 2s-complement encoding,
addition, subtraction, and signed and unsigned overflow. We
also discuss the typical number of bytes in different C types.

Finally, we discuss number representations and methods
for converting between decimal, binary, and hexadecimal
formats. We briefly discuss floating point representation, but
do not expect students to be able to convert from binary to
floating point. After covering binary representation, students
have an understanding of the mechanics of binary arithmetic,
memory sizes, and overflow. This background is helpful
as we go on to cover computer architecture, caching, and
paging later in the semester.

Architecture. Our coverage of architecture follows from
the main course goal of understanding how a computer
runs a program. We introduce the instruction set architecture
(ISA) to help tie the architecture and program components
together. Our coverage starts with the von Neumann archi-
tecture and showing that both instructions and data can be
encoded in a binary representation and stored in memory.
After a brief overview of the fetch, decode, execute and store
cycle, we focus primarily on the design of the CPU and how
it executes program instructions. Starting from basic AND,
OR, and NOT logic gates, we design small circuits including
arithmetic circuits like ripple carry adders, multiplexers, R-
S latches, and gated D-latches. We stress abstraction along
the way, building increasingly complex circuits from simpler
ones. We use these components to discuss the design of a
basic CPU consisting of an ALU and register file.

With prior introduction to binary representation, students
begin to understand how individual bits can pass through
circuits to perform computation, select from multiple inputs,
and store results. We then add control circuitry, a program
counter, and instruction registers to complete a simple CPU.
We discuss instruction execution stages and how a clock
circuit drives the execution. Along the way, we illustrate how
instruction bits are used and how the CPU circuit is designed
to execute the instruction stages on program data stored
in CPU registers. Students gain practice through written
homeworks and by building basic circuits and a complete
simple CPU using Logisim [13] (Lab 3).

We also introduce instruction pipelining and multicore
processors, presenting both in the context of improving
efficiency. We discuss how pipelining makes efficient use
of CPU circuitry resulting in an improved instructions per
cycle rate. Our coverage of multicore highlights which CPU
components are duplicated for each core and which are
shared by cores. We also preview how operating systems
make use of multicore computers to schedule multiple
programs or parts of a single program to run simultaneously,
in parallel, across the cores.

Assembly Programming. Our course also provides stu-
dents with their first exposure to assembly language. We
introduce assembly after students have learned how CPU
circuitry is designed to run program instructions, including
the stages of the execution pipeline and its clock-driven
execution. Students also have had practice building a simple
ALU for a small instruction set in Logisim, described in
Lab 3 of section III-B. With this basic understanding of
the underlying hardware, we next introduce the instruction
set architecture (ISA) as the interface between the lowest
software level and the hardware that executes it. We discuss
the role of the compiler in translating a C program to the
binary form, and assembly as the human-readable form
of this binary machine code that the CPU understands.
We currently teach 32-bit x86 assembly code because it
represents a simplified form of the ISA of our lab machines
and students can disassemble their own program binaries to
the assembly code they learn.

We start with introducing the IA-32 register set and some
basic arithmetic instructions, translating between C code
and IA-32 equivalents, and stepping through their execution
and the effects on registers and memory. Once students
are familiar with the basics of assembly programming, we
continue with assembly instructions for data movement,
addressing modes, and changing control flow, tying these
to C code examples with if-else, loops, function call/return,
and stack memory. We continue to stress the relationship
between C code examples and their IA-32 equivalents,
translating between the two. Supporting function call and
return and the stack is one of the most dense parts, requiring
that students understand the effects of complex instruction
execution on CPU registers and memory. We typically use



a full week to cover this part, and we give students lots of
practice in class and on written homeworks. Our focus helps
to reinforce program memory, scope, and function call and
return. We additionally cover assembly translations for C
code with arrays and pointers, and discuss memory layout
of arrays. Students apply their understanding of assembly
programming in written homework assignments, and in two
lab assignments, Lab 4 where they translate C to IA-32
assembly that they compile and run, and Lab 5 where they
use GDB assembly code tracing to discover the correct
program input to find their way out of a binary maze
program.

Our primary goal in teaching assembly is related to the
main course goal of understanding how a computer runs a
program. However, we also discuss some efficiency issues in
the context of different equivalent assembly sequences and
the effects of instruction memory accesses on performance.

Memory Hierarchy. We motivate our analysis of the
memory hierarchy by describing the wide variety in perfor-
mance characteristics (e.g., access latency, storage density,
and cost) across storage devices. Given that there is no clear
best type of memory for all scenarios, we discuss how a real
system contains multiple memory technologies and that it
needs to answer the question of where in-use program data
should be stored at any given point in time to maximize
performance.

Next, we introduce terminology for primary and sec-
ondary storage devices and describe the differences in their
programming interfaces for accessing data (i.e., CPU in-
structions directly access primary storage via a memory
bus versus a call to OS for secondary storage). We then
introduce common storage devices that are likely to be found
in a typical desktop or laptop system, characterize their
performance trade-offs, and classify them as either primary
or secondary.

We introduce the idea of a memory hierarchy with fast,
low-density memory at the “top” and slow, high-density
memory at the “bottom”. To help students conceptualize how
data moves through the hierarchy, we present a motivating
group exercise that asks students where to store real-world
physical objects (e.g., taking advantage of locality to store
library books). This example builds students’ intuition for
using past accesses as a predictor for future behavior.

Armed with some real-world intuition, we formalize the
notion of locality and differentiate how future access predic-
tions might be either temporal or spatial in nature. We then
perform another interactive exercise, this time with a block
of C code, that asks students to identify several common
instances of temporal and spatial locality in a program. At
this point, students are ready to apply the general principles
of the memory hierarchy and locality to cache systems.

Caching. We begin our coverage of caching by defining
the cache conceptually as a faster subset of main memory.
Using an abstract model of the cache, we introduce hit

and miss terminology, starting with reading (loading) values
from memory into the cache, and writing (storing) values
back to memory. We also define cache lines and their basic
metadata (valid and dirty bits). We build on this terminology
to introduce cache writing policies, cache design (i.e., block
size and associativity), and briefly analyze cache design
trade-offs and their affect on the cache hit rate. Next, we
introduce direct-mapped and set-associative cache designs
to students.

Starting with a direct-mapped cache, we demonstrate
examples of using the address of a memory operation to
perform a cache lookup. As this is a frequent source of
confusion for students, we pay particular attention to how
various cache parameters like the block size and number
of lines affect address division into the tag, index, and
offset. Next, we introduce set-associative cache mechanics,
primarily focusing on two-way set associativity to reduce
complexity. We illustrate how associativity introduces a new
challenge for eviction and the need for a replacement policy.
While we ask students to brainstorm potential policies, we
primarily concentrate on LRU, which connects to the locality
intuition we built while covering the memory hierarchy.
In our discussion of both cache designs, students work in
small groups on several examples of cache accesses using a
sequence of memory accesses (a mix of loads and stores).

We wrap up the discussion of caching by linking back
to our initial introduction for the memory hierarchy and
the ways in which data storage locations impact system
performance. We present students with an interactive exer-
cise in which two code blocks containing nested for loops
access memory in different stride patterns. The exercise asks
students to analyze their relative performance with cache
behavior in mind.

Operating Systems. CS 31’s coverage of operating sys-
tems primarily focuses on mechanisms and key abstractions,
leaving most of the policies to our upper-level operating
systems course. We begin the discussion by demystifying
what an OS is and the role it plays as part of a computer
system in efficiently managing hardware and providing an
easy-to-use interface to users. As part of the demystification,
we discuss a bit about how an OS boots onto the hardware
and initializes itself to be prepared to run programs on the
system.

We then introduce the process abstraction, motivating it
as way for the OS to make efficient use of of hardware
resources, linking this to our earlier coverage of the memory
hierarchy and secondary storage devices. We introduce the
idea of concurrency in the context of multiprogramming,
timesharing, and process context switching.

Next, we discuss processes creation, introducing fork
and the process hierarchy. We further emphasize concurrent
execution after calls to fork. We also introduce the exit,
wait, and exec system calls, with multiple code examples
to illustrate their effects on the process hierarchy. The



examples highlight concurrent points in execution as well
as dependencies or orderings of points in related processes
executions (e.g., a parent process waiting for a child to
terminate).

While describing processes, we also introduce asyn-
chronous signals and the execution of signal handler code.
We primarily focus on SIGCHLD signals as processes exit,
but we also give students code examples of signal handlers
for different types of signals to give them a feel for how
asynchronous signals and signal handlers work. In conjunc-
tion with this material, we assign a lab where students
implement a simple Unix shell program that includes support
for running in the background and a signal handler for
SIGCHLD signals. Our in-class and textbook code examples
help to make this lab doable in a course at this level.

The second main OS abstraction we present is virtual
memory (VM), and we note that students have already
received instruction in CPU architecture, assembly pro-
gramming, and caching prior to our introduction to virtual
memory. We motivate virtual memory as a mechanism
for implementing the process abstraction—each process is
provided the same view of its own private address space
while sharing physical RAM space, and the OS needs a
mechanism to protect processes from accessing the contents
of each others address space.

We also motivate VM as a means for the OS to make
efficient use of RAM, allowing it to make memory appear
to have larger capacity than physical RAM. We introduce
single-level paged virtual memory and discuss virtual-to-
physical address translation using a page table. We show
examples of how page table mappings change on a context
switch, page faults and page fault handling, LRU replace-
ment, effective memory access time, and TLB caching of
address translations to speed-up effective memory access
time. This is another point where we emphasize concurrency
in process context switching and how it affects page table
mappings. We leave more advanced virtual memory topics,
and a focus on policies, to our upper-level OS class.

Finally, we introduce parallelism immediately after our
coverage of virtual memory. This provides a nice transition
from OS to our primary coverage of shared memory par-
allelism by beginning with threads as another abstraction
implemented by the OS.

Shared Memory Parallelism. Our last main topic covers
shared memory parallel programming using pthreads. Hav-
ing previously covered multicore architecture and the OS
process abstraction, we begin by discussing the similarities
and differences between threads and processes. Our expla-
nation of threads, what threads share, and what they get
private copies of (stack space and register values) follows
easily from what students have just learned about processes,
virtual memory, and the parts of a process’s virtual address
space. It also links back to the efficient use of hardware
resources and revisits multicore processors. We introduce

speedup and mention how resource contention can reduce
observed speedup from theoretical ideal linear speedup in
embarrassingly parallel applications.

We next introduce the pthreads library and show how to
create, run, and join threads. We use some small examples,
such as access to a shared counter, to introduce data races,
critical sections, and atomic operations. In discussing syn-
chronization primitives, we focus on the primitives provided
by pthreads: mutex locks, barriers, and condition variables.
We introduce the concept of Amdahl’s law, but defer a
deeper dive into this analysis to more advanced upper level
courses. Once we introduce synchronization, we discuss the
potential for deadlock, and we revisit speedup and using
synchronization sparingly to enforce correctness while not
having an overly large negative impact on performance.
We finish the module with the producer/consumer (bounded
buffer) problem, asking students to work in small groups to
identify locations that require synchronization.

Our final lab exercise allows students to explore pthreads
shared memory parallel programming by writing a pthreads
implementation of Conway’s game of life (Lab 10). A prior
lab assignment has students write a sequential version of this
application (Lab 6). The parallel version requires them to
revisit and make some modest modifications to exploit data
parallelism and process parts of a two-dimensional grid in
parallel. A small amount of barrier and mutex synchroniza-
tion is required to ensure correctness. The assignment allows
students to compare correctness to their prior sequential
solution while also allowing them to measure near linear
speedup up to 16 threads on multicore machines.

Our choice to focus on shared memory parallelism as
the first introduction parallelism follows from what students
have learned in the course to this point. Our being able
to rely on students already having learned about processes
and virtual memory, concurrency, assembly, and machine
organization with a bit about multicore processors, makes
the introduction to parallelism, threads, shared memory, and
synchronization follow as a natural “next step” in what they
are learning. It also allows us to cover important parallel
concepts in more depth and breadth than if students did
not have this context. Finally, we specifically choose the
approach of focusing only on shared memory parallelism
as a way to develop parallel thinking skills more deeply by
focusing on problems in just one parallel paradigm.

B. Labs and Homeworks

The CS 31 lab assignments cover a variety of topics, with
increasing complexity of the course of the semester. For
more details, a link to our recent offerings can be found
at [5].

Lab 0, Tools for CS 31: Many students place out of our
introductory course, so this warm-up lab covers basic Unix
shell navigation and helps students set up their Swarthmore
GitHub Enterprise accounts.



Lab 1, Data Representation and Arithmetic: This
assignment consists of two parts. In the first, students an-
swer written questions related to binary/hexadecimal number
representation and arithmetic. In the second, students use
simple C arithmetic statements to demonstrate properties of
C variables (e.g., the maximum value that can be stored in
an int variable).

Lab 2, C Programming Warm-up: Having developed
basic C proficiency, students implement a basic O(N2)
sorting algorithm that they already know from a CS1 course.
This lab builds on students understanding of C type decla-
rations, C I/O, and writing simple functions.

Lab 3 [24], Building an ALU Circuit: Students build,
test, and simulate digital circuits using Logisim [13] They
start by building small, standalone circuits (a sign extender
and one-bit adder) and then combine them with additional
logic to produce an ALU that supports eight operations and
five status flags.

Lab 4, C Pointers and Assembly Code: Lab 4 contains
two independent parts on C programming and assembly.
The first requires students to compute basic statistics (mean,
median, max) on input files with arrays of unknown types
and sizes. Students learn to dynamically allocate and free
memory, pass pointers, and write modular C functions. The
second part of the lab involves writing short functions in
assembly (e.g., swap two variables, or sum all values in an
array). We also teach students the basics of Valgrind and
GDB, and strongly encourage their use through the course.

Lab 5, Binary Maze: This lab is inspired by the “binary
bomb lab” [4]. In this assignment, students work through
a series of challenges (“floors” in a “maze”) for which
they use GDB to decipher assembly functions. Each floor
requires a specific input pattern to advance. Each successive
floor increases in complexity, giving students practice with
understanding assembly and program control flow.

Lab 6, Game of Life: Students build a simulation for
Conway’s game of life. This lab introduces students to more
complex memory allocation in the form of two-dimensional
arrays for the game’s grid. It also requires them to read game
parameters and an initial grid state from a file. In addition to
console output, we use the ParaVis [6] library to graphically
visualize the simulation.

Lab 7, C String Library: After observing many students
struggle with C strings in upper-level courses, we added this
lab to CS 31. It requires students to implement and write test
cases for several common C string library functions (e.g.,
strcat, strcpy, etc.). Note that Swarthmore’s semesters
have a different number of weeks in the fall and spring, so
this lab is only offered when time permits.

Lab 8, Command Parser Library: Students practice
building a library, with header files, to implement a com-
mand shell parser. The parser must tokenize a string and
detect the presence of an ampersand character (indicating
that the command should be run in the background).

Lab 9, Unix Shell: In lab 9, students build a shell
that executes commands in the foreground and background.
They use fork and execvp to start child processes and
waitpid to reap terminated processes. We also require
students to implement a simplified history mechanism.

In semesters that aren’t able to teach the string lab, we
often swap the order of labs 8 and 9, with the shell coming
before the parser. In those semesters, we provide students
with a parser library, which they replace with their own
parser later.

Lab 10, Parallel Game of Life: Students extend their
lab 6 simulation to execute on multiple threads in parallel
using pthreads. Their solutions must partition the game
grid vertically or horizontally, assigning responsibility for
different regions to each of the threads. They use barriers to
synchronize threads between rounds and a mutex to protect
shared state. As in lab 6, we use the ParaVis [6] library to
visualize the simulation, this time showing the thread regions
in different colors. Visualizing the assignment in this way
helps students to debug thread partitioning problems.

Written Homeworks. In addition to longer programming
assignments, we assign weekly written homeworks. Home-
work assignments are short (1-2 hours to complete) and
worth relatively little credit. Rather than assessing students,
they promote student learning and help students prepare for
exams by giving them extra practice on class topics. Each
assignment focuses on applying a few key topics from the
week’s class content and readings.

Our current set of homeworks cover the following topics
(assigned in the order listed):

• C programming: evaluating expressions, identifying
types, function tracing, stack drawing;

• Binary and arithmetic: converting between decimal,
binary, and hex, signed and unsigned arithmetic;

• Circuits: tracing through a circuit to produce its logic
table, creating a circuit given a logic table;

• C pointers: type evaluation, code tracing, stack and
heap memory drawing;

• Simple assembly: arithmetic instructions, showing
memory and register contents, and converting to C;

• Advanced assembly: translate C conditionals and loops
to assembly, trace assembly function calls, showing
stack and register changes;

• Direct mapped caching: address division, tracing ac-
cesses showing hit, miss, and replacements on cache.

• Set associative caching: similar to direct mapped,
applying LRU replacement;

• Processes: trace through C code examples with fork,
exit, wait, draw process hierarchy, identify possible
outputs from concurrent processes;

• Virtual memory 1: tracing through a single process’s
memory accesses using a page table, show effects on
page table and RAM;

• Virtual memory 2: similar to VM1, but tracing through



two process’ memory accesses, with context switching
and LRU replacement;

• Threads: pthreads solution to producer/consumer
started as an in-class exercise.

Over the years, we have experimented with different
homework formats, including all-individual, individual or
student-selected small groups, and assigning all students to
homework and study groups that produce a single submis-
sion. We first used the assigned group approach during a
remote COVID semester. Assigning all students to small
study groups was designed to foster more group interaction
with problem solving and exam preparation during a time
when students where not meeting together in class. There
was strong support for these groups from students, with
a small number who did not find them helpful. From the
faculty viewpoint, they were effective in fostering group
learning. Additionally, their being assigned and required
ensured that every student had at least one small group with
which to collaborate. This model is something that we plan
to consider for our in-person offerings as well.

IV. EVALUATION

This section describes a preliminary evaluation of CS 31’s
efficacy in introducing the PDC concepts of Table I. We
begin by highlighting some anecdotal evidence from CS 31
course evaluations by students across five recent offerings
spanning from Spring 2018 to Spring 2020. Approximately
60 students take the course each semester, so these data
represent responses from about 300 students total.

Several students appreciated their exposure to parallel
programming concepts in CS 31. One student notes, “I
was exposed to a great deal of new concepts, especially in
thinking about hardware, processors and new ways for man-
aging programs like threading and forking”, while another
student commented, “Parallelism is great! Also pipelining.
Those two concepts are super applicable to life broadly...”.
CS 31 has also increased student interest in taking upper-
level systems courses, which students reporting sentiments
such as, “The ALU lab and learning how to parallelize
programs were really interesting, and now I want to take
parallel and distributed computing.” and “I’ve always been
interested in systems, and was extremely excited for this
course. I’d say it exceeded my high expectations and I can’t
wait to take more systems courses!”

A large number of student responses refer to a new
systems perspective that CS 31 provided them — “the
course enabled me to learn about new concepts such as
assembly code, parallelism, circuits, caches and other mem-
ory concepts”, “whenever I create programs, I should keep
in mind both [sic] BigO and what happens in hardware”,
“I like how we unpacked a lot of what goes on behind the
scenes”, and “It’s cool to understand how the underlying
hardware works”.

Another goal of CS 31 is to build student confidence
in thinking about system architectures, evaluating trade-
offs, and writing performant, error-free programs. We share
the following comments regarding student confidence after
taking CS 31— “I learned to be a more independent worker
and gained confidence in my cs knowledge.”, “The combina-
tion of theoretical approaches and practical application felt
like a good mix ... the balance of the two really helped me
learn.”. Another student shared, “It was really interesting to
think about the “give and take” nature or just questions of
efficiency in different things we talked about, and see how
those really apply to computer systems that we use every day.
That kind of connection was really valuable and interesting
to talk about, and it’s something that isn’t always present in
other classes.”

We also collected student responses to open-ended ques-
tions from upper-level Operating Systems and Parallel and
Distributed Computing courses that relate their understand-
ing of PDC concepts back to their exposure to these concepts
in CS 31. Students noted, “I liked the application of all the
different things I’ve learned in CS31 and CS35”, “CS31 got
me very excited for and curious about computer systems.
I was really excited to satisfy my deepened curiosity for
operating systems after CS31 had sparked my interest.” and
“Ever since CS31, I wanted to learn more about how an
OS works. I was interested in learning more about the
mechanisms/policies and am interested in systems coding.”

In addition to quotes from student evaluations of CS 31,
we collected survey data from two upper-level systems
courses. In one course, Parallel and Distributed Computing
(CS 87, Fall 2021), students took the survey at the end of a
course as a reflection back on what they knew coming in. In
the other, Networking (CS 43, Spring 2022), we administered
the survey the first week of class, and we plan to run it again
at the end of the semester as a post-course reflection.

The survey asked students to rate how well CS 31
prepared them for upper-level courses with PDC content.
We presented students with a collection terms and concepts
and a five-point rating scale based on Bloom’s taxon-
omy. The ratings corresponded to: 0: do not recognize the
topic/concept; 1: recognize the topic/concept/term; 2: could
define it; 3: could analyze/understand this topic/concept in
a solution that was given to me; and, 4: could apply this
topic/concept to a problem.

Figure 1 shows the average and median values of stu-
dents’ ratings. These data show that, on average, students
recognized all of these topics, and they feel comfortable
explaining most of these topics as they start upper-level
courses. For topics that CS 31 emphasizes heavily, such
as the memory hierarchy, C programming, and some of
the fundamentals of shared memory programming including
race conditions, synchronization, and pthread programming,
they rate their understanding at deeper levels.

Expected results are not all 4s for all of these topics.



Figure 1: Upper-level students’ rating of their understanding
level of some PDC topics introduced in CS 31.

CS 31 is the first introduction to these concepts, and we do
not cover all of them at the level where we would expect
students to be able to apply them to a problem. However,
we do expect that they should recognize all the terms and
be ready to use them in upper-level courses, perhaps with
a brief refresher. For some of the students surveyed, it has
been up to two years since they took CS 31, and it is likely
that their current understanding is lower than it would have
been immediately after completing the course. We typically
give “lab 0” assignments in our upper-level systems courses
that are designed to get students back up to speed on CS 31
material and skills that they may not have used for awhile.
We find student skill (and confidence in them) come back
to students quickly after this practice.

In an open-ended question asking if they had any other
comments when reflecting on CS 31, most students didn’t
add any comments. A few students said that they didn’t
remember much from CS 31 (it had been a while), and others
in the post-course survey stated that they felt that CS 31
helped prepare them well for CS 87. One student noted,
“I think it gave me enough knowledge to feel comfortable
taking CS 87”, and another wrote, “‘I really liked how we
started right where [CS] 31 left off.”

Finally, for the faculty who have taught upper-level
courses with PDC content prior to our addition of CS 31,
we see a substantial change in preparedness, knowledge, and
comfort with PDC and systems concepts since adding CS 31
as a required part of our introductory sequence. With CS 31,
students start significantly further ahead of where they were
in the past. The background in computer systems and PDC
that CS 31 provides results in students who are comfortable
jumping into advanced work in these areas right away, and
they naturally think in parallel and distributed ways from
day one. Students come into our upper-level classes with

programming and thinking skills that allow us to spend more
time on more advanced PDC in our upper-level systems
courses.

V. RELATED WORK

Efforts to introduce PDC concepts early into the CS
curriculum have to a large extent advocated the use of PDC
modules in an existing CS1 [3], [7], [8] or a CS2 Data
Structures course [2], [9], [10]. These PDC modules include
unplugged activities [9], [14], [20] codifying canonical PDC
paradigms, such as “patternlets” [2], [7] or adding one-to-
two week PDC instruction modules [8], [10]. Our work
in CS 31 is complementary to these efforts – it follows a
philosophy of introducing PDC concepts more pervasively
through the course, a philosophy shared by other pervasive
PDC efforts described in [8], [11], [12].

Courses introducing PDC concepts have successfully used
used Python [23], Java [3], [11] and C++ [2] with the
OpenMP [8] and MPI libraries. A recent survey article pro-
vides detailed reports of use of different teaching paradigms
and programming languages in use [21]. Our focus has
been to introduce parallelism through C and to develop
parallel thinking skills. We have found this to successfully
translate to students’ understanding of concepts of shared-
memory, parallelism, and synchronization and contribute
to their understanding of PDC concepts “ground-up”. Our
goal is to introduce parallelism pervasively through our
curriculum [17] as this sets up students to also be exposed in
upper-level courses to recognizing parallel concepts in other
courses where they use CUDA, MPI, OpenMP, sockets, and
python parallelization libraries.

VI. CONCLUSIONS

We presented the design, goals, and outcomes of an
introductory-level computer systems course that introduces
students to PDC topics, focusing on shared memory paral-
lelism. Because our course requires only a CS1 prerequisite
and it is itself a required prerequisite for upper-level courses,
we ensure that all CS students are exposed to these important
topics early. The course’s curriculum introduces some PDC
topics throughout, so end of semester coverage on shared
memory parallel computing threads, and pthreads program-
ming flows naturally from what students learned about
computer systems along the way. We found that students
learn and practice important parallel thinking skills that help
prepare them for upper-level courses where they will use
and expand these skills. The faculty teaching upper-level
courses with PDC content note the benefits that this early
exposure to PDC and parallel thinking provides our students
as they move through our curriculum. All course materials,
including homework and lab assignments, are available off
the webpages [5] of our current and past offerings of the
course.
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