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The convex hulls of sets of n points in two and three 
dimensions can be determined with O(n log n) opera- 
tions. The presented algorithms use the "divide and 
conquer" technique and reeursively apply a merge 
procedure for two nonintersecting convex hulls. Since 
any convex hull algorithm requires at least O(n log n) 
operations, the time complexity of the proposed 
algorithms is optimal within a multiplicative constant. 
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1. Introduction 

The de t e rmina t ion  of  the convex hull  of  a finite 
set of  po in ts  is re levant  to several  p rob l ems  in com-  
pu te r  graphics ,  design a u t o m a t i o n ,  pa t t e rn  recogni t ion  
and  ope ra t ions  research :  references [3, 4, 10J- - jus t  
to  cite a f e w - -d i s c us s  some interes t ing app l ica t ions  in 
these areas,  which require  convex hull  c ompu ta t i on .  
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We also mention that other important  questions, such 
as set separability or existence of linear decision rules, 
are easily solved through the determination of convex 
hulls. 

This problem has received some attention in recent 
times. Chand and Kapur  [2] described a convex hull 
algorithm for a finite set of n points in a space with an 
arbitrary number  of dimensions. Their approach is 
based on the so-called "gift  wrapping" principle and 
requires a number  of  operations O(n~). The first convex 
hull algorithm to run in time less than O(n 2) was found 
by R.L. Graham [5] for a set of points in the plane. 
Graham ' s  method, based on representing the points in 
polar coordinates and sorting them according to their 
azimuth, has a running time O(n log n + Cn), for some 
constant C determined by the Cartesian-to-polar co- 
ordinate conversion. More recently, R.A. Jarvis [7] 
presented an alternative algorithm for the planar case, 
which is the two-dimensional specialization of the 
Chand-Kapur  method and runs in time O(nm), where 
m is the number  of points on the hull. Subsequent to 
the original submission of this paper, we learned of 
the enlightening doctoral thesis of M.I. Shamos, which 
contains several convex hull algorithms with running 
time O(n log n) for a set of n points in the plane ([9], 
problems P3, P15, POL5c). 

A problem of long standing has been the computa-  
tion of convex hulls in more than two dimensions in 
time less than O(n2). In this paper we show that the 
convex hull of a finite set of n points in three dimensions 
can be computed with at most O(n log n) operations. 
We also report  an algorithm for the plane, which is 
original and can be viewed as the two-dimensional 
specialization of the three-dimensional algorithm. The 
latter is based on the property that the number  of 
edges of the convex hull of n points is at most  linear 
in n. For  this reason, its generalization based on 
edges is impossible beyond three dimensions, since in 
more than three dimensions it is known that  there 
exist convex polytopes with n vertices whose numbers  
of edges are O(n 2) (see [6, p. 193]). 

The computat ion model we shall refer to is that of a 
random access machine (RAM) in the sense of  Aho, 
Hopcroft ,  and Ullman ([1, pp. 5-24]), with the only 
modification that real number  arithmetic replaces in- 
teger arithmetic. Our algorithms are based on the 
well-known technique called "divide and conquer ."  
Let E a denote the d-dimensional Euclidean space and 
let the set S = { a l , . . .  , a s ] a j C  E a} be given. With- 
out loss of generality, the points of  S are assumed to 
be given in Cartesian coordinates: in fact, in the adopted 
computat ion model, a conversion between coordinate 
systems can be done in a constant time per point. By 
xi(a) we denote the itti coordinate of a C E a, for 
i = 1, . . .  , d. Here and hereafter we assume that for 
any two points u and v in E a we have x~(u) ~ x~(v), 
for i = 1, . . .  , d. This simplification helps bring out 
the basic ideas of the algorithms to be described, while 
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the modifications required for the unrestricted case are 
straightforward. 

As a preliminary step we sort the elements of S 
according to the coordinate x l ,  and relabel them if 
necessary so that we may assume x~(ai) < x~(aj) ¢=~ i < 
j. We can now give the following general algorithm for 
a set of n d-dimensional points. 

Algorithm CH 

Input. A set S = {a~,. . . ,  a~}, where ai C E d and x~(ai) < x~(ai) 
¢=~i <j for i ,  j = 1 , . . . , n .  

Output. The convex hull CH(S) of S. 
Step 1. Subdivide S into S~ = {a~, . . . ,  atoll} and $2 = 

{at~l+~, • • •, a~}. 
Step 2. Apply recursively Algorithm CH to S~ and Sz to obtain 

CH(St) and CH(S2). 
Step 3. Apply a merge algorithm to CH(S~) and CH(S2) to obtain 

CH(S) and halt. 

The initial sorting of the xl coordinates of  the 
elements of S requires O(n log n) operations. Notice 
that, because of this sorting and of step 1, the sets 
CH(S1) and CH(S2) will define two nonintersecting 
convex domains. Now,  if the merging of two convex 
hulls with at most n d-dimensional extreme points in 
total requires at most P~(n) operations, an upper- 
bound to the number  Cd(n) of operations required by 
Algorithm CH is given by the equation 

Ca(n) = 2Cd(½n) + ea(n). 

(Notice that we have assumed that n be even for sim- 
plicity, but practically without loss of generality). 
Thus, if we can show that Pa(n) is O(n), we shall ob- 
tain that  Ca(n) is O(n log n), and, taking into account 
the initial sorting pass, an overall complexity O(n log n) 
results for the convex hull determination. 

In Sections 3 and 4 we shall show that  merging 
algorithms with number  of operations O(n) can be 
designed for d = 2, 3. In the next section we shall 
establish a lower bound to the number  of operations 
performed by any algorithm for finding the convex 
hull of  a set of n points. Since this computat ional  
work is of at least the same order as that of an al- 
gorithm for sorting n numbers,  i.e. it is O(n log n), we 
reach the interesting conclusion that the proposed 
convex hull algorithms for finite sets in two and three 
dimensions are optimal in their order of complexity, 
within a multiplicative constant. 

2. Lower Bound 

In this section we present a lower bound to the 
running time of any algorithm which computes the 
convex hull of a set of  n points. 

The arguments presented are similar to those de- 
veloped in connection with finding the maxima of a 
set of vectors ~[8, 11]), which is a problem related to 
the one being investigated. Incidentally, we note that  
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Fig. 1. Illustration for the proof of Lemma 3. 
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Fig. 2. Illustrationoftheplanar merge procedure. 
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natural way, i.e. for u and v E A, u > v if and only if 
xi(u) >_ xi(v), for i = 1, 2. The maximal elements of  
this partially ordered set are called the maxima of A. 
Let M2(n) be the maximum running time of any al- 
gori thm for finding the maxima of A. We then recall 
the following lemma. 

LEMMA 2. [8]. M2(n) >_ O(n log n). 
We can now establish the result: 

LEMMA 3. C2(n) >_ O(n log n) for n >_ 3. 
PROOF. Let A = {Hi, " ' ' ,  an} be a planar set of 

points, and assume that CH(A) = A: this means 
that the points a l ,  . . .  , a~ are the vertices of a convex 
polygon and may be thought of as forming a circuit. 
There are four points in A, ajo , a h , a h , and ah such 
that x2(ajo ) = maxlx2(al) ,  xl(ah) = m a x l x l ( a 0 ,  
x2(ah) = mint x2(al), and xl(ai3) = mint xl(aO (see 
Figure 1). These four points identify four "quadrants ,"  
and there is a quadrant  which contains at least I]n] 
points. Without loss of generality, let the quadrant  
determined by aj0 and a h contain s _> [¼n] points. All 
of these points are maxima in the sense defined above 
and their identification, by Lemma 2, requires time at 
least O(s log s) = O(¼n log ¼n) = O(n log n). [] 

Thus we reach the following conclusion. 
THEOREM. Ca(n) >_ Ca-l(n) >_ . . .  >_ C2(n) >__ 

O(n log n). 

the same computat ion model was adopted in [8] and 
[11]. 

We begin with a straightforward result. 
LEMMA 1. Ca-l(n) < Ca(n) for d >_ 3. 
PROOF. Let Aa-1 be a set of  n (d -- 1)-dimensional 

points for d _> 3, and let Ad be the set of d-dimensional 
points obtained by extending each point v E Aa-1 
with the same component  va. Let CH(Aa) and CH(Aa_O 
be the convex hulls of Aa and Aa-1. Clearly the pro- 
jection of CH(Ad) on the coordinates x ~ , . . . ,  xa-1 
is CH(Aa-O. Thus to find CH(Ad-I), it suffices to 
find CH(Aa), whence Ca-l(n) <_ Ca(n). [] 

The next objective is to establish a lower bound 
to the number  of operations C2(n) required by any 
algorithm for finding the convex hull of n points in 
two dimensions. All known convex hull algorithms in 
two dimensions obtain the so-called "ordered convex 
hull," i.e. the sequence of the vertices of the polygon 
coinciding with the convex hull. However, the follow- 
ing result applies also to algorithms which simply 
provide the identification of the hull points. The 
bound is based on a previous result concerning maxima 
of  vectors [8, 11] and on a connection between the 
two problems which Shamos attributes to A.C. Yao 
([9, problem P35)]. It  is therefore convenient to recall 
the result on the maxima of two dimensional vectors. 
Let A be a set of  n two-dimensional vectors with real 
components.  A partial ordering is defined on A in a 

3. Merge Algorithm for Two-Dimensional Sets 

The algorithm presented in this section finds the 
ordered convex hull of a set of two-dimensional points. 1 
The ordered convex hull in two dimensions is not  
just the set of  the vertices of the convex polygon repre- 
senting the hull, but the sequence of the vertices on 
the boundary  of this polygon. 

Let A = ( a l , - . . ,  ap) and B = ( b l , . . . ,  bq) 
be two convex polygons in the plane where (a l ,  . . .  , 
ap) is the (clockwise) sequence of the vertices in the 
boundary  of A, and similarly is (bl, . . .  , bq) for B. 
We assume that xl(aO < Xl(b . / )  for i = 1 , . . . ,  p 
a n d j  = 1, • • • , q, so that  A and B are nonintersecting. 

By merging A and B we mean the determination 
of the convex hull CH(A, B) of A and B. The convex 
polygon CH(A, B) is obtained by tracing the two 
tangents common to A and B and by eliminating the 
points of A and B which become internal to the re- 
suiting polygon (see Figure 2). 

We let la and ra be two points of  A such that  
x2(IA) = mint x2(aO and x2(rA) = maxix2(al) ;  simi- 
larly lB and rn are defined in B. For  easy reference, we 
shall call the two tangents to A and B as left and right 

1As mentioned in the Introduction, Shamos independently 
discovered several planar convex hull algorithms exhibiting the 
same worst-case time bound as ours [7]. Our algorithm is some- 
what more complicated to describe than those of Shamos; how- 
ever, since it employs a different technique, it is in our opinion 
worth reporting. 
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tangent. I t  is easily realized that the determination of, 
say, the right tangent depends upon the relative order- 
ing of x2(ra) and x2(rB); the same can be said for the 
left tangent in relation to x2(IA) and x2(lB). Therefore 
in the sequel we shall consider only one case: specifi- 
cally, the determination of the right tangent under the 
hypothesis 

xx(ra) < xx(rB) and x2(ra) < x2(rB); 

the other case, as well as the determination of the left 
tangent, are treated in an analogous manner. Without 
loss of generality, we shall also assume that ra = ax 
and rB = b~. Indices of  vertices of  A and B are as- 
sumed to be taken mod  p and mod  q, respectively. 

Given two points u and v in the plane, (u, v) and 
(u, v) denote, respectively, the line containing u and v 
and the segment delimited by u and v. The slope sl(u, v) 
is given by sl(u, v) = (Xl(U) -- xl(v)) / (x2(u)  -- x2(v)). 

We must now determine the two vertices a~. of 
A and by. of B which are the extremes of the right 
tangent, where 1 _< i* _< index[la] and 1 _< j* _< 
index [/B]. We begin by defining the slopes: 

a~,i+x = sl(a~, as+x),/3y,y+x = sl(by, by+x), ")'q = sl(a~, by). 

Notice that in the ranges 1 < i < index [la] and 
1 _< j < index [ln], due to convexity, the sequences 
(ax2, a23, . - . )  and (ill2, /353, . . . )  are strictly mono-  
tone decreasing. Thus the extremes as. and by. of  the 
right tangent are characterized by the following prop- 
erties: 

t > 1 =* a~.,S.+l < 3'~*y* _< a~.-x.s* ; 
z = 1 ~ a12 < )'xy*; 
j* > 1 ~/3y*,y*+l _< 7s,y* < /3y*-Ly* ; 
j* = 1 ~/312 _< 3's.1. 

We claim that the following algorithm uniquely de- 
termines a~. and by. .  

Algorithm RT (right tangent) 

Input. Coordinates of (ax, a 2 , . . . ,  la) and (bj, b2, • • •, IB), and 
slopes (a12, c~23 . . . .  ) and ~12,/~2s, . . . ) .  

Output. i*, j*, the indices of the extremes of the right tangent 
segment. 

RT1. Set i ~-- 1, j .-- 1. 
RT2. Compute 3'ii ~-- (xl(ai) -- xx(bi))/(x2(ai) -- x2(by)). 
RT3. Ifai.i+~ >_ 3'iy, set i ~ i + 1 and go to RT2. 
RT4. If/$i,i+x > "/ii, setj *--j + 1 and go to RT2. 
RT5. Set i* ~ i, j* *--j, and halt. 

We now prove the validity of  Algorithm RT. The 
algorithm halts when the conditions a~.~+x < 3'y,y+t 
and/3y,y+l < -/~ occur for the first time. Thus all we 
have to show is that  before executing step RT3 we 
always have 3'~y _ a~-x,~ and 3'~y < f ly- l , . . ' .  We dis- 
tinguish two eases: (1) j is incremented or (2) i is 
incremented. 

(1) The index j is incremented when the condition 
ai,i+l < "y,:y < /3y,y+x occurs. Assuming inductively 
that  "r~y < ai-l,~, we have (see Figure 3(a)) 3'~,y+1 _< 
"r~y < o~;_1,~ and 3'~,y+1 < ¢/y.y+~ : after incrementing j ,  

Fig. 3. Illustrations for the validity of Algorithm RT. 
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these conditions become 3'~y _< a~-i,~ and ~y < ~y-x,y, 
as desired. 

(2) The index i is incremented when 3',y _< a~,~+l. 
Notice that  we cannot  have fly-l,y _< 3's+x,y : indeed 
/~y-l,y ~___ Ti+l,y implies as.~+l > ~i , i -1 ,  whence, by 
the formulat ion of step RT3, the vertex by cannot  
have been reached (see Figure 3(b)) yet by the al- 
gorithm; thus we have ~',+l,y < By-l,y • Next  we notice 
that  when 3'~y _< a~,~+x, we also have 3,s+~,y _< a~,~+l. 
The two conditions "Y~+l,y < By-x,y and 3'~+1.y _< a¢,~+x 
become 3'0 </3y_l,y and 3'~y _< a~_l,~ after incrementing 
the index i, thus proving our original claim and the 
validity of the algorithm. I t  is clear that  the number  
of  operations performed by Algorithm RT is O(i* + j*).  

A procedure analogous to Algori thm RT is re- 
quired for the determination of the other tangent to 
A and B (left tangent); clearly, the overall number  
of  operations necessary for determining the two tan- 
gents is at most  of  order (p + q). Finally, we recall 
that the data structure describing a convex polygon is 
simply a list giving the circular sequence of its vertices. 
Thus it is easily realized that the construction of the 
data structure describing CH(A,  B) f rom the analogous 
data structures of A and B can be accomplished by 
modifying a fixed number  (two) of pointers. Thus, 
the overall running time P2(n) of the merge algorithm 
of planar sets is at most  linear in the total number  n 
of vertices. 

4. Merge  Algorithm for Three-Dimensional  Sets 

The merge algorithm for planar sets described in 
the preceding section can be viewed as constructing a 
two-dimensional cylinder tangent to two given convex 
polygons. This idea is the basis for the three-dimen- 
sional procedure, which we shall now informally 
describe. 

A convex polyhedron is specified by the sets of  its 
vertices and of the edges connecting them; f rom these 
two sets, the set of  its faces is readily obtainable. Let 
A and B be two convex polyhedra with p and q vertices, 
respectively. Again we assume that  for any points a~ 
of A and by of B w e  have xl(as) < Xl(by), so that A 
and B are nonintersecting. 

It  is a crucial observation that the sets of vertices 
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and edges of either A or B form a planar graph: if we 
exclude degeneracies, they form a triangulation. Thus 
we know that the numbers of edges of A and B are at 
most (3p -- 6) and (3q -- 6), respectively, by Euler's 
theorem (see e.g. [6, p. 189]). 

The convex hull CH(A, B) of A and B may be 
obtained by the following operations (see Figure 4 
for an intuitive illustration): 

(1) Construction of a "cylindrical" triangulation 3, 
which is tangent to A and B along two circuits EA 
and EB, respectively. 

(2) Removal both from A and from B of the respective 
portions which have been "obscured" by 3. 

Here, the terms "cylindrical" and "obscured" have 
not been formally defined; rather, they have been used 
in their intuitive connotations, as suggested by Figure 4. 

Alternatively to the generalization of the two- 
dimensional procedure, the construction of 3 can be 
viewed as an application of the "gift wrapping" prin- 
ciple of Chand and Kapur [2] to the merging of two 
convex polyhedra. The gift wrapping principle works 
as follows. Let C be a polyhedron with n vertices. 
Assuming a face f of C is given, select an edge of f.  
This edge and every vertex of C determine a plane; a 
new face of C belongs to the plane forming with f the 
largest convex angle. Thus the application of the gift 
wrapping principle to the construction of the convex 

Fig. 4. Merging two convex hulls. Construction of 3. 
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hull, as described, requires work O(n) for each new 
face of C to be determined, yielding a total work 
O(n2). We will show below that the properties of con- 
vex hulls can be exploited so that merging two convex 
polyhedra by gift wrapping can be done in time at 
most linear in n. 

The initial step in the construction of the triangula- 
tion 3 is the determination of an edge of 3. This is 
easily done by referring the projections A' and B' 
on the plane (xl ,  x~) (see Figure 4) of the two poly- 
hedra A and B, respectively. We can assume inductively 
that the convex hulls CH(A') and CH(B') are avail- 
able at this stage (obviously, CH(A') and CH(B') 
are nonintersecting): indeed, applying the merge 
algorithm for planar sets described in Section 3 to 
CH(A') and CH(B'), we obtain two segments tangent 
to both CH(A') and CH(B'). This operation, which 
runs in time at most O(pq-q), not only extends the 
inductive assumption but also yields a segment whose 
extreme points are the projections of extreme points of 
an edge of 3. Thus an edge of 3 has been determined 
and the construction can be started. 

We now describe the advancing mechanism of the 
procedure. If we temporarily exclude degeneracies, 
i.e. we assume that each face of 3 is a triangle, each 
step determines a new vertex, whereby a new face is 
added to 3. We shall discuss later the case in which the 
restriction on degeneracies is removed. In our illustra- 
tion (Figure 4), a2 and (a2, b2, al) are, respectively, the 
vertex and the face of 3 constructed in the previous 
step. The advancing mechanism makes reference to 
the most recently constructed face of 3. To initialize 
the procedure, the reference face is chosen as one of 
the half planes parallel to the x~ axis, containing the 
initially determined edge and delimited by it. Let (a: ,  
bs, al) be the reference face for the current step. We 
must now select a vertex 8, connected to as, such that 
the face (a2, b2, 8) forms the largest convex angle 
with (as, bs, al) among the faces (as, b2, v), for all 
v ~ al connected to a2 ; similarly we select b among 
the vertices connected to bs. For  reasons to become 
apparent later, we call these comparisons of type 1. 

Next, once the "winners" (as, bs, 8) and (as, b2, b) 
have been selected, we have a run-off comparison, called 
of type 2. If (a~, b2,8)  forms with (as, bs, al) a larger 
convex angle than (as, b~, b), then 8 is added to :3 
(b is added in the opposite case) and the step is com- 
plete. Practically, the triangulation 3 is entirely speci- 
fied by the circular sequence E,B of the vertices which 
are successively acquired by the advancing mechanism 
just illustrated. In fact, this sequence EAB is some inter- 
leaving of the two sequences of vertices of E ,  and EB ; 
the interleaving exactly specifies the edges of 3 not 
belonging to EA or EB (see Figure 5). 

In the case of a degeneracy, the advancing mecha- 
nism fails to construct a new face and simply extends 
the previously constructed one. Indeed, in this case a 
type 1 winner face (or, both winner faces) forms with 
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Fig. 7. Illustration of the cotangent calculation. 

the reference face an angle equal to ~', i.e. it is coplanar 
with it; thus a new vertex (or, new vertices) and pos- 
sibly new edges are added to the reference face. 

To efficiently implement the outlined step, we 
make the following considerations. First we describe 
a criterion for uniquely ordering the edges incident 
on any vertex of A or B. For  any.a in A (b in B) the 
edges incident on a (on b) are numbered in ascending 
order so that they form a counterclockwise (clockwise 
in B) sequence for an external observer. For  concrete- 
ness of illustration, suppose now that b and (b, a) 
are the most recently added vertex and edge of 3, 
respectively, and let (bl ,  b) be the edge of EB reaching 
b (see Figure 6). Without loss of generality, we may 
assume that the numbering of the edges incident on 
b and of their terminals bl ,  b2, -- .  , bk be as shown 
in Figure 6, where k = 7. Let (bs, b, a) be the face 
which forms the largest convex angle with (bl , b, a) 
among the faces (bl, b, a) for i = 2, . . .  , k (in our 
case, s = 4). It is clear that any (b, bl) for 1 < i < 
s is an internal edge of the final hull CH(A, B) and 
need not  be further considered. 

Thus we can easily upper-bound the number of 
comparisons of angles between pairs of planes re- 
quired by the construction of 3. First of all, we notice 
that each type 1 comparison definitively eliminates 
one edge of either A or B from those considered by 
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the procedure which constructs 3. Since the numbers 
of edges of A and B are at most (3p -- 6) and (3q - 6), 
respectively, the number of type 1 comparisons is 
bounded by [(3p - 6) - 1 -[- (3q - 6) - 1] = 3(p -k- q) 
-- 14. Next, each type 2 comparison adds a new vertex 
to either Ea or En :  since the numbers of vertices of 
Ea and EB are at most p and q, respectively, the num- 
ber of type 2 comparisons is bounded by (p + q -- 1). 
We conclude that the number of angle comparison 
grows no faster than linearly in the total number of 
vertices of A and B. Notice that this result rests cru- 
cially on the property that the numbers of edges of 
A and B are linear in their respective numbers of 
vertices. 

It is now worth considering the implementation of 
the operation of comparing two angles, which is central 
to the outlined algorithm. We first notice that, due to 
convexity, all angles to be considered belong to the 
range [0, ~-]. Referring now to Figure 7, consider the 
convex angle formed by the face QST with the face 
QRS, lying in plane a. Let/3 be a plane orthogonal to 
QS and T' be the projection of T on/3: (Tr -- ~T'SU) 
is the angle between QST and QRS. Since the function 
cotangent: [0, ~-] ~ [ -  oo, + oo ] is an order-reversing 
mapping, we shall replace the comparison of two 
angles with the comparison of their cotangents, thereby 
avoiding costly computations of inverse trigonometric 
functions. Thus we must compute cot (zr -- ~T'SU) 
= --cot  (~T'SU) = SU/T 'U .  We shall use vector 
notation and let "×" and "o" denote "outer"  and 
" inner"  products of 3-dimensional vectors, respec- 
tively; also, we let QS = s, and ST = t. Referring to 
Figure 7, it is obvious that SU = Kit o ((r X s) X s) 
a n d T ' U  = --K2t o (r)< s), whereK~ -1 = [ r [.[ s [2 sin 0 
and /Q-21 = [ r [ . [ s [  sin 0, 0 being the angle between 
r and s. It follows that S U / T ' U  = - t o ( ( r  X s) X s)/  
[ s J . t o ( r  )< s). If, as is the case with our algorithm, 
the vector s is the same for all planes whose angles are 
to be compared, we may replace the comparison of 
cotangents with that of cotangents multiplied by Is[ .  
It is then straightforward to show that the computa- 
tion of [s [ . S U / T ' U  requires four multiplications, 
four additions, and one division. 

Once the construction of the triangulation 5 has 
been completed, i.e. the interleaving EaB of EA and 
EB has been obtained, we must remove those portions 
of A and B which have become internal to CH(A, B). 
Concretely, this is done by constructing the data 
structure describing CH(A, B) from Ea~ and from the 
structures describing A and B. The data structure 
describing a spatial set C may be realized as a collec- 
tion of lists {L(c)}, each list L(c) corresponding to a 
vertex c of C and giving the sequence of the edges 
incident on c, ordered according to the previously 
described criterion. By means of a vector of pointers, 
each list is accessible in fixed time. 

We consider the lists of vertices in Ea and EB. 
Let Ea = a q ,  ai2, " " ,  air andEB = b j l , b s 2 , ' "  , 
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b j , .  Suppose we are currently updat ing the list L(a~k): 
typically, E,B contains the substring ,ya~kbjhbj~+,... 
bj, alk+~, where bj h . . .  b h is possibly empty and ~, is 
either a~k_i or blh_, • Then we will remove f rom L(a~,) 
the edges comprised between (alk, aik_x) and (a~k, 
t/ik+X) , and insert the sequence (a~ k , ~')(aik, bjh), " ' "  , 
(a~k, bh)  : this effects the updat ing of  L(ai ,) .  Note  that  
the work  required by this par t  of  the updat ing pro- 
cedure is propor t ional  to the number  o f  edges which 
have to be added when reconstruct ing the lists of  
vertices in EA and EB, i.e. it is bounded  by O(p --t- q). 

The updat ing task is completed by a simple dele- 
t ion of  the lists pertaining to vertices which have be- 
come internal to the hull. Referring, for example, to 
the polyhedron A, the circuit EA divides the hull into 
two portions,  the interior one of  which is to be de- 
leted. The latter is a planar graph and has O(p) edges 
at most.  Traversing this graph and marking  its vertices 
involves inspecting each edge twice. It  follows that  
the deletion of  lists of  vertices originally in A and B 
requires work  at most  O(p q- q). 

Therefore,  since both  the construct ion of  the tri- 
angulat ion 5 and the deletion of  obscured port ions of  
A and B are procedures which require a number  of  
operat ions at mos t  linear in the number  of  vertices o f  
A and B, this proper ty  holds for the merging algori thm 
as a whole, that  is, P3(n) = O(n). 
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Transient-free average working-set size and tran- 
sient-free missing-page rate for a finite sample of a 
reference string are defined. Use of these statistics is 
appropriate if the contents of  the working set at the start 
of  the recorded string are unknown. If  a certain sta- 
tionarity condition holds, these statistics provide un- 
biased estimates of  expected working-set sizes, missing- 
page probabilities, and interreference distance 
probabilities. Two other pairs of  estimators are shown 
to be biased. Expressions for the transient-free statistics 
are obtained in terms of  interval statistics. Several 
methods of computation are discussed, the usefulness of  
each depending on length of the sample, number of 
distinct references, and the amount of main storage 
available to the computer performing the calculations. 
In particular, methods are described for handling long 
strings containing many distinct page names. 
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