
4. Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson,
R.S. TENEX, a paged time sharing system for the PDP-10. Comm.
ACM15, 3 (March 1972), 135-143.
5. Bobrow, D.G., and Murphy, D.L. The structure of a LISP
system using two level storage. Comm. ACM 10, 3 (March 1967).
155-159.
6. Cheney, C.J. A nonrecursive list compacting algorithm.
Comm. ACM 13, 11 (Nov. 1970), 677-678.
7. Deutsch, L.P. An interactive program verifier. Ph.D. Th.,
Comptr. Sci. Dep., U. of California, Berkeley, Calif., May 1973.
8. Deutsch, L.P. A LISP machine with very compact programs.
Third Int. Joint Conf. on Artificial Intelligence, Stanford, Calif.,
1973, pp. 697-703.
9. Fenichel, R.R., and Yochelson, J.C. A LISP garbage-collector
for virtual-memory computer systems. Comm. ACM 12, 11 (Nov.
1969), 611-612.
10. Hansen, W.J. Compact list representation: Definition, garbage
collection, and system implementation. Comm. ACM 12, 9
(Sept. 1969), 499-507.
U . Hehner, E.C.R. Matching program and data representations
to a computing environment. Ph.D. Th., Comp.tr. Systems Res.
Group, U. of Toronto, Toronto, Canada, Nov. 1974.
12, McCarthy, J., et al. LISP 1.5 Programmer's Manual. M.I.T.
Press, Cambridge, Mass., 1962.
13. Minsky, M.L. A LISP garbage collector algorithm using
serial secondary storage. Artificial Intelligence Proj. Memo 58
(rev.), Project MAC, M.I.T., Cambridge, Mass., Dec. 1963.
14. Quam, L.H. Stanford LISP 1.6 manual. Artificial Intelligence
Proj., Stanford University, Stanford, Calif., Sept. 1969.
15. Reboh, R., and Sacerdoti, E. A preliminary QLISP manual.
Tech. Note 81, Stanford Res. Inst. AI Center, Menlo Park, Calif.,
Aug. 1973.
16. Sacerdoti, E. The nonlinear nature of plans. Fourth Int.
Joint Conf. on Artificial Intelligence, Tbilisi, Georgia, U.S.S.R.,
1975, pp. 206-214.
17. Shannon, C.E. A mathematic theory of communication.
Bell System Tech. J. 27 (July 1948), 379-423.
18. Smith, D.H., Masinter, L.M., and Sridharan, N.S. Heuristic
DENDRAL: Analysis of molecular structure. In Computer Repre-
sentation and Manipulation of Chemical Information, W.T. Wipke,
S. Heller, R. Feldman, and E. Hyde, Eds., Wiley, New York,
1974.
19. Teitelman, W. INTERLISP Reference manual. Xerox Palo
Alto Res. Center, Palo Alto, Calif., 1974.
20. Van der Poel, W.L. A Manual of HISP for the PDP-9. Tech-
nical U., Delft, Netherlands.
21. Weissman, C. LISP 1.5 Primer. Dickenson Pub. Co.,
Belmont, Calif., 1967.
22. Wilner, W.T. Design of the BI700. Proc. AFIPS 1972 FJCC,
Vol. 41, AFIPS Press, Montvale, N.J., pp. 579-586.
23. Zipf, G.K. Human Behavior and the Prhwiple of Least Effort.
Addison-Wesley, Reading, Mass., 1949.

P r o g r a m m i n g
Techniques

G. M a n a c h e r S.L. G r a h a m
Ed i to r s

Convex Hulls of Finite
Sets of Points in Two
and Three Dimensions
F. P. Preparata and S. J. Hong
University of Illinois at Urbana-Champaign

The convex hulls of sets of n points in two and three
dimensions can be determined with O(n log n) opera-
tions. The presented algorithms use the "divide and
conquer" technique and reeursively apply a merge
procedure for two nonintersecting convex hulls. Since
any convex hull algorithm requires at least O(n log n)
operations, the time complexity of the proposed
algorithms is optimal within a multiplicative constant.

Key Words and Phrases: computational com-
plexity, convex hull, optimal algorithms, planar set of
points, spatial set of points

CR Categories: 4.49, 5.25, 5.32

1. Introduction

The de t e rmina t ion of the convex hull of a finite
set of po in ts is re levant to several p rob l ems in com-
pu te r graphics , design a u t o m a t i o n , pa t t e rn recogni t ion
and ope ra t ions research : references [3, 4, 10J- - jus t
to cite a f e w - -d i s c us s some interes t ing app l ica t ions in
these areas, which require convex hull c ompu ta t i on .

Copyright (~) 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Joint Services Elec-
tronics Program (U.S. Army, U.S. Navy, and U.S. Air Force)
under Contract DAAB-07-72-C-0259.

Authors' addresses: F.P. Preparata, Coordinated Science
Laboratory, University of Illinois, Urbana, IL 61801; S.J. Hong,
IBM Systems Product Division, Poughkeepsie, NY 12602. This
work was completed while the second author was on leave at the
University of Illinois.

87 Communications February 1977
of Volume 20
the ACM Number 2

We also mention that other important questions, such
as set separability or existence of linear decision rules,
are easily solved through the determination of convex
hulls.

This problem has received some attention in recent
times. Chand and Kapur [2] described a convex hull
algorithm for a finite set of n points in a space with an
arbitrary number of dimensions. Their approach is
based on the so-called "gift wrapping" principle and
requires a number of operations O(n~). The first convex
hull algorithm to run in time less than O(n 2) was found
by R.L. Graham [5] for a set of points in the plane.
Graham ' s method, based on representing the points in
polar coordinates and sorting them according to their
azimuth, has a running time O(n log n + Cn), for some
constant C determined by the Cartesian-to-polar co-
ordinate conversion. More recently, R.A. Jarvis [7]
presented an alternative algorithm for the planar case,
which is the two-dimensional specialization of the
Chand-Kapur method and runs in time O(nm), where
m is the number of points on the hull. Subsequent to
the original submission of this paper, we learned of
the enlightening doctoral thesis of M.I. Shamos, which
contains several convex hull algorithms with running
time O(n log n) for a set of n points in the plane ([9],
problems P3, P15, POL5c).

A problem of long standing has been the computa-
tion of convex hulls in more than two dimensions in
time less than O(n2). In this paper we show that the
convex hull of a finite set of n points in three dimensions
can be computed with at most O(n log n) operations.
We also report an algorithm for the plane, which is
original and can be viewed as the two-dimensional
specialization of the three-dimensional algorithm. The
latter is based on the property that the number of
edges of the convex hull of n points is at most linear
in n. For this reason, its generalization based on
edges is impossible beyond three dimensions, since in
more than three dimensions it is known that there
exist convex polytopes with n vertices whose numbers
of edges are O(n 2) (see [6, p. 193]).

The computat ion model we shall refer to is that of a
random access machine (RAM) in the sense of Aho,
Hopcroft , and Ullman ([1, pp. 5-24]), with the only
modification that real number arithmetic replaces in-
teger arithmetic. Our algorithms are based on the
well-known technique called "divide and conquer ."
Let E a denote the d-dimensional Euclidean space and
let the set S = { a l , . . . , a s] a j C E a} be given. With-
out loss of generality, the points of S are assumed to
be given in Cartesian coordinates: in fact, in the adopted
computat ion model, a conversion between coordinate
systems can be done in a constant time per point. By
xi(a) we denote the itti coordinate of a C E a, for
i = 1, . . . , d. Here and hereafter we assume that for
any two points u and v in E a we have x~(u) ~ x~(v),
for i = 1, . . . , d. This simplification helps bring out
the basic ideas of the algorithms to be described, while

88

the modifications required for the unrestricted case are
straightforward.

As a preliminary step we sort the elements of S
according to the coordinate x l , and relabel them if
necessary so that we may assume x~(ai) < x~(aj) ¢=~ i <
j. We can now give the following general algorithm for
a set of n d-dimensional points.

Algorithm CH

Input. A set S = {a~,. . . , a~}, where ai C E d and x~(ai) < x~(ai)
¢=~i <j for i , j = 1 , . . . , n .

Output. The convex hull CH(S) of S.
Step 1. Subdivide S into S~ = {a~, . . . , atoll} and $2 =

{at~l+~, • • •, a~}.
Step 2. Apply recursively Algorithm CH to S~ and Sz to obtain

CH(St) and CH(S2).
Step 3. Apply a merge algorithm to CH(S~) and CH(S2) to obtain

CH(S) and halt.

The initial sorting of the xl coordinates of the
elements of S requires O(n log n) operations. Notice
that, because of this sorting and of step 1, the sets
CH(S1) and CH(S2) will define two nonintersecting
convex domains. Now, if the merging of two convex
hulls with at most n d-dimensional extreme points in
total requires at most P~(n) operations, an upper-
bound to the number Cd(n) of operations required by
Algorithm CH is given by the equation

Ca(n) = 2Cd(½n) + ea(n).

(Notice that we have assumed that n be even for sim-
plicity, but practically without loss of generality).
Thus, if we can show that Pa(n) is O(n), we shall ob-
tain that Ca(n) is O(n log n), and, taking into account
the initial sorting pass, an overall complexity O(n log n)
results for the convex hull determination.

In Sections 3 and 4 we shall show that merging
algorithms with number of operations O(n) can be
designed for d = 2, 3. In the next section we shall
establish a lower bound to the number of operations
performed by any algorithm for finding the convex
hull of a set of n points. Since this computat ional
work is of at least the same order as that of an al-
gorithm for sorting n numbers, i.e. it is O(n log n), we
reach the interesting conclusion that the proposed
convex hull algorithms for finite sets in two and three
dimensions are optimal in their order of complexity,
within a multiplicative constant.

2. Lower Bound

In this section we present a lower bound to the
running time of any algorithm which computes the
convex hull of a set of n points.

The arguments presented are similar to those de-
veloped in connection with finding the maxima of a
set of vectors ~[8, 11]), which is a problem related to
the one being investigated. Incidentally, we note that

Communications February 1977
of Volume 20
the ACM Number 2

Fig. 1. Illustration for the proof of Lemma 3.

x- aJl

~ ej o

°j 3

Fig. 2. Illustrationoftheplanar merge procedure.

x. -'~B

/xO¢, ~ rB

~e_,~ ~----~bj*

~ h j *
~. x 2

natural way, i.e. for u and v E A, u > v if and only if
xi(u) >_ xi(v), for i = 1, 2. The maximal elements of
this partially ordered set are called the maxima of A.
Let M2(n) be the maximum running time of any al-
gori thm for finding the maxima of A. We then recall
the following lemma.

LEMMA 2. [8]. M2(n) >_ O(n log n).
We can now establish the result:

LEMMA 3. C2(n) >_ O(n log n) for n >_ 3.
PROOF. Let A = {Hi, " ' ' , an} be a planar set of

points, and assume that CH(A) = A: this means
that the points a l , . . . , a~ are the vertices of a convex
polygon and may be thought of as forming a circuit.
There are four points in A, ajo , a h , a h , and ah such
that x2(ajo) = maxlx2(al) , xl(ah) = m a x l x l (a 0 ,
x2(ah) = mint x2(al), and xl(ai3) = mint xl(aO (see
Figure 1). These four points identify four "quadrants ,"
and there is a quadrant which contains at least I]n]
points. Without loss of generality, let the quadrant
determined by aj0 and a h contain s _> [¼n] points. All
of these points are maxima in the sense defined above
and their identification, by Lemma 2, requires time at
least O(s log s) = O(¼n log ¼n) = O(n log n). []

Thus we reach the following conclusion.
THEOREM. Ca(n) >_ Ca-l(n) >_ . . . >_ C2(n) >__

O(n log n).

the same computat ion model was adopted in [8] and
[11].

We begin with a straightforward result.
LEMMA 1. Ca-l(n) < Ca(n) for d >_ 3.
PROOF. Let Aa-1 be a set of n (d -- 1)-dimensional

points for d _> 3, and let Ad be the set of d-dimensional
points obtained by extending each point v E Aa-1
with the same component va. Let CH(Aa) and CH(Aa_O
be the convex hulls of Aa and Aa-1. Clearly the pro-
jection of CH(Ad) on the coordinates x ~ , . . . , xa-1
is CH(Aa-O. Thus to find CH(Ad-I), it suffices to
find CH(Aa), whence Ca-l(n) <_ Ca(n). []

The next objective is to establish a lower bound
to the number of operations C2(n) required by any
algorithm for finding the convex hull of n points in
two dimensions. All known convex hull algorithms in
two dimensions obtain the so-called "ordered convex
hull," i.e. the sequence of the vertices of the polygon
coinciding with the convex hull. However, the follow-
ing result applies also to algorithms which simply
provide the identification of the hull points. The
bound is based on a previous result concerning maxima
of vectors [8, 11] and on a connection between the
two problems which Shamos attributes to A.C. Yao
([9, problem P35)]. It is therefore convenient to recall
the result on the maxima of two dimensional vectors.
Let A be a set of n two-dimensional vectors with real
components. A partial ordering is defined on A in a

3. Merge Algorithm for Two-Dimensional Sets

The algorithm presented in this section finds the
ordered convex hull of a set of two-dimensional points. 1
The ordered convex hull in two dimensions is not
just the set of the vertices of the convex polygon repre-
senting the hull, but the sequence of the vertices on
the boundary of this polygon.

Let A = (a l , - . . , ap) and B = (b l , . . . , bq)
be two convex polygons in the plane where (a l , . . . ,
ap) is the (clockwise) sequence of the vertices in the
boundary of A, and similarly is (bl, . . . , bq) for B.
We assume that xl(aO < Xl(b . /) for i = 1 , . . . , p
a n d j = 1, • • • , q, so that A and B are nonintersecting.

By merging A and B we mean the determination
of the convex hull CH(A, B) of A and B. The convex
polygon CH(A, B) is obtained by tracing the two
tangents common to A and B and by eliminating the
points of A and B which become internal to the re-
suiting polygon (see Figure 2).

We let la and ra be two points of A such that
x2(IA) = mint x2(aO and x2(rA) = maxix2(al) ; simi-
larly lB and rn are defined in B. For easy reference, we
shall call the two tangents to A and B as left and right

1As mentioned in the Introduction, Shamos independently
discovered several planar convex hull algorithms exhibiting the
same worst-case time bound as ours [7]. Our algorithm is some-
what more complicated to describe than those of Shamos; how-
ever, since it employs a different technique, it is in our opinion
worth reporting.

89 Communications February 1977
of Volume 20
the ACM Number 2

tangent. I t is easily realized that the determination of,
say, the right tangent depends upon the relative order-
ing of x2(ra) and x2(rB); the same can be said for the
left tangent in relation to x2(IA) and x2(lB). Therefore
in the sequel we shall consider only one case: specifi-
cally, the determination of the right tangent under the
hypothesis

xx(ra) < xx(rB) and x2(ra) < x2(rB);

the other case, as well as the determination of the left
tangent, are treated in an analogous manner. Without
loss of generality, we shall also assume that ra = ax
and rB = b~. Indices of vertices of A and B are as-
sumed to be taken mod p and mod q, respectively.

Given two points u and v in the plane, (u, v) and
(u, v) denote, respectively, the line containing u and v
and the segment delimited by u and v. The slope sl(u, v)
is given by sl(u, v) = (Xl(U) -- xl(v)) / (x2(u) -- x2(v)).

We must now determine the two vertices a~. of
A and by. of B which are the extremes of the right
tangent, where 1 _< i* _< index[la] and 1 _< j* _<
index [/B]. We begin by defining the slopes:

a~,i+x = sl(a~, as+x),/3y,y+x = sl(by, by+x), ")'q = sl(a~, by).

Notice that in the ranges 1 < i < index [la] and
1 _< j < index [ln], due to convexity, the sequences
(ax2, a23, . - .) and (ill2, /353, . . .) are strictly mono-
tone decreasing. Thus the extremes as. and by. of the
right tangent are characterized by the following prop-
erties:

t > 1 =* a~.,S.+l < 3'~*y* _< a~.-x.s* ;
z = 1 ~ a12 <)'xy*;
j* > 1 ~/3y*,y*+l _< 7s,y* < /3y*-Ly* ;
j* = 1 ~/312 _< 3's.1.

We claim that the following algorithm uniquely de-
termines a~. and by. .

Algorithm RT (right tangent)

Input. Coordinates of (ax, a 2 , . . . , la) and (bj, b2, • • •, IB), and
slopes (a12, c~23) and ~12,/~2s, . . .) .

Output. i*, j*, the indices of the extremes of the right tangent
segment.

RT1. Set i ~-- 1, j .-- 1.
RT2. Compute 3'ii ~-- (xl(ai) -- xx(bi))/(x2(ai) -- x2(by)).
RT3. Ifai.i+~ >_ 3'iy, set i ~ i + 1 and go to RT2.
RT4. If/$i,i+x > "/ii, setj *--j + 1 and go to RT2.
RT5. Set i* ~ i, j* *--j, and halt.

We now prove the validity of Algorithm RT. The
algorithm halts when the conditions a~.~+x < 3'y,y+t
and/3y,y+l < -/~ occur for the first time. Thus all we
have to show is that before executing step RT3 we
always have 3'~y _ a~-x,~ and 3'~y < f ly- l , . . ' . We dis-
tinguish two eases: (1) j is incremented or (2) i is
incremented.

(1) The index j is incremented when the condition
ai,i+l < "y,:y < /3y,y+x occurs. Assuming inductively
that "r~y < ai-l,~, we have (see Figure 3(a)) 3'~,y+1 _<
"r~y < o~;_1,~ and 3'~,y+1 < ¢/y.y+~ : after incrementing j ,

Fig. 3. Illustrations for the validity of Algorithm RT.

/ i
/ j-1 , p b j / / b

/ 7 oi-1

b j+ " ~"

/ ' ' / a i 1

oi4.1
Oi+l

(a) (b)

these conditions become 3'~y _< a~-i,~ and ~y < ~y-x,y,
as desired.

(2) The index i is incremented when 3',y _< a~,~+l.
Notice that we cannot have fly-l,y _< 3's+x,y : indeed
/~y-l,y ~___ Ti+l,y implies as.~+l > ~i , i -1 , whence, by
the formulat ion of step RT3, the vertex by cannot
have been reached (see Figure 3(b)) yet by the al-
gorithm; thus we have ~',+l,y < By-l,y • Next we notice
that when 3'~y _< a~,~+x, we also have 3,s+~,y _< a~,~+l.
The two conditions "Y~+l,y < By-x,y and 3'~+1.y _< a¢,~+x
become 3'0 </3y_l,y and 3'~y _< a~_l,~ after incrementing
the index i, thus proving our original claim and the
validity of the algorithm. I t is clear that the number
of operations performed by Algorithm RT is O(i* + j*).

A procedure analogous to Algori thm RT is re-
quired for the determination of the other tangent to
A and B (left tangent); clearly, the overall number
of operations necessary for determining the two tan-
gents is at most of order (p + q). Finally, we recall
that the data structure describing a convex polygon is
simply a list giving the circular sequence of its vertices.
Thus it is easily realized that the construction of the
data structure describing CH(A, B) f rom the analogous
data structures of A and B can be accomplished by
modifying a fixed number (two) of pointers. Thus,
the overall running time P2(n) of the merge algorithm
of planar sets is at most linear in the total number n
of vertices.

4. Merge Algorithm for Three-Dimensional Sets

The merge algorithm for planar sets described in
the preceding section can be viewed as constructing a
two-dimensional cylinder tangent to two given convex
polygons. This idea is the basis for the three-dimen-
sional procedure, which we shall now informally
describe.

A convex polyhedron is specified by the sets of its
vertices and of the edges connecting them; f rom these
two sets, the set of its faces is readily obtainable. Let
A and B be two convex polyhedra with p and q vertices,
respectively. Again we assume that for any points a~
of A and by of B w e have xl(as) < Xl(by), so that A
and B are nonintersecting.

It is a crucial observation that the sets of vertices

90 Communications February 1977
of Volume 20
the ACM Number 2

and edges of either A or B form a planar graph: if we
exclude degeneracies, they form a triangulation. Thus
we know that the numbers of edges of A and B are at
most (3p -- 6) and (3q -- 6), respectively, by Euler's
theorem (see e.g. [6, p. 189]).

The convex hull CH(A, B) of A and B may be
obtained by the following operations (see Figure 4
for an intuitive illustration):

(1) Construction of a "cylindrical" triangulation 3,
which is tangent to A and B along two circuits EA
and EB, respectively.

(2) Removal both from A and from B of the respective
portions which have been "obscured" by 3.

Here, the terms "cylindrical" and "obscured" have
not been formally defined; rather, they have been used
in their intuitive connotations, as suggested by Figure 4.

Alternatively to the generalization of the two-
dimensional procedure, the construction of 3 can be
viewed as an application of the "gift wrapping" prin-
ciple of Chand and Kapur [2] to the merging of two
convex polyhedra. The gift wrapping principle works
as follows. Let C be a polyhedron with n vertices.
Assuming a face f of C is given, select an edge of f.
This edge and every vertex of C determine a plane; a
new face of C belongs to the plane forming with f the
largest convex angle. Thus the application of the gift
wrapping principle to the construction of the convex

Fig. 4. Merging two convex hulls. Construction of 3.

Xl

/ "

i

~' X 2

x 3

Fig. 5. Fragment of 3 described by the string alblb2a2a3a4b~.

_ _ EB

J

I --- EA

91

hull, as described, requires work O(n) for each new
face of C to be determined, yielding a total work
O(n2). We will show below that the properties of con-
vex hulls can be exploited so that merging two convex
polyhedra by gift wrapping can be done in time at
most linear in n.

The initial step in the construction of the triangula-
tion 3 is the determination of an edge of 3. This is
easily done by referring the projections A' and B'
on the plane (xl , x~) (see Figure 4) of the two poly-
hedra A and B, respectively. We can assume inductively
that the convex hulls CH(A') and CH(B') are avail-
able at this stage (obviously, CH(A') and CH(B')
are nonintersecting): indeed, applying the merge
algorithm for planar sets described in Section 3 to
CH(A') and CH(B'), we obtain two segments tangent
to both CH(A') and CH(B'). This operation, which
runs in time at most O(pq-q), not only extends the
inductive assumption but also yields a segment whose
extreme points are the projections of extreme points of
an edge of 3. Thus an edge of 3 has been determined
and the construction can be started.

We now describe the advancing mechanism of the
procedure. If we temporarily exclude degeneracies,
i.e. we assume that each face of 3 is a triangle, each
step determines a new vertex, whereby a new face is
added to 3. We shall discuss later the case in which the
restriction on degeneracies is removed. In our illustra-
tion (Figure 4), a2 and (a2, b2, al) are, respectively, the
vertex and the face of 3 constructed in the previous
step. The advancing mechanism makes reference to
the most recently constructed face of 3. To initialize
the procedure, the reference face is chosen as one of
the half planes parallel to the x~ axis, containing the
initially determined edge and delimited by it. Let (a: ,
bs, al) be the reference face for the current step. We
must now select a vertex 8, connected to as, such that
the face (a2, b2, 8) forms the largest convex angle
with (as, bs, al) among the faces (as, b2, v), for all
v ~ al connected to a2 ; similarly we select b among
the vertices connected to bs. For reasons to become
apparent later, we call these comparisons of type 1.

Next, once the "winners" (as, bs, 8) and (as, b2, b)
have been selected, we have a run-off comparison, called
of type 2. If (a~, b2,8) forms with (as, bs, al) a larger
convex angle than (as, b~, b), then 8 is added to :3
(b is added in the opposite case) and the step is com-
plete. Practically, the triangulation 3 is entirely speci-
fied by the circular sequence E,B of the vertices which
are successively acquired by the advancing mechanism
just illustrated. In fact, this sequence EAB is some inter-
leaving of the two sequences of vertices of E , and EB ;
the interleaving exactly specifies the edges of 3 not
belonging to EA or EB (see Figure 5).

In the case of a degeneracy, the advancing mecha-
nism fails to construct a new face and simply extends
the previously constructed one. Indeed, in this case a
type 1 winner face (or, both winner faces) forms with

Communications February 1977
of Volume 20
the ACM Number 2

Fig. 6.

b7

b6
bl

b~

G

Fig. 7. Illustration of the cotangent calculation.

the reference face an angle equal to ~', i.e. it is coplanar
with it; thus a new vertex (or, new vertices) and pos-
sibly new edges are added to the reference face.

To efficiently implement the outlined step, we
make the following considerations. First we describe
a criterion for uniquely ordering the edges incident
on any vertex of A or B. For any.a in A (b in B) the
edges incident on a (on b) are numbered in ascending
order so that they form a counterclockwise (clockwise
in B) sequence for an external observer. For concrete-
ness of illustration, suppose now that b and (b, a)
are the most recently added vertex and edge of 3,
respectively, and let (bl , b) be the edge of EB reaching
b (see Figure 6). Without loss of generality, we may
assume that the numbering of the edges incident on
b and of their terminals bl , b2, -- . , bk be as shown
in Figure 6, where k = 7. Let (bs, b, a) be the face
which forms the largest convex angle with (bl , b, a)
among the faces (bl, b, a) for i = 2, . . . , k (in our
case, s = 4). It is clear that any (b, bl) for 1 < i <
s is an internal edge of the final hull CH(A, B) and
need not be further considered.

Thus we can easily upper-bound the number of
comparisons of angles between pairs of planes re-
quired by the construction of 3. First of all, we notice
that each type 1 comparison definitively eliminates
one edge of either A or B from those considered by

92

the procedure which constructs 3. Since the numbers
of edges of A and B are at most (3p -- 6) and (3q - 6),
respectively, the number of type 1 comparisons is
bounded by [(3p - 6) - 1 -[- (3q - 6) - 1] = 3(p -k- q)
-- 14. Next, each type 2 comparison adds a new vertex
to either Ea or En : since the numbers of vertices of
Ea and EB are at most p and q, respectively, the num-
ber of type 2 comparisons is bounded by (p + q -- 1).
We conclude that the number of angle comparison
grows no faster than linearly in the total number of
vertices of A and B. Notice that this result rests cru-
cially on the property that the numbers of edges of
A and B are linear in their respective numbers of
vertices.

It is now worth considering the implementation of
the operation of comparing two angles, which is central
to the outlined algorithm. We first notice that, due to
convexity, all angles to be considered belong to the
range [0, ~-]. Referring now to Figure 7, consider the
convex angle formed by the face QST with the face
QRS, lying in plane a. Let/3 be a plane orthogonal to
QS and T' be the projection of T on/3: (Tr -- ~T'SU)
is the angle between QST and QRS. Since the function
cotangent: [0, ~-] ~ [- oo, + oo] is an order-reversing
mapping, we shall replace the comparison of two
angles with the comparison of their cotangents, thereby
avoiding costly computations of inverse trigonometric
functions. Thus we must compute cot (zr -- ~T'SU)
= --cot (~T'SU) = SU/T 'U . We shall use vector
notation and let "×" and "o" denote "outer" and
" inner" products of 3-dimensional vectors, respec-
tively; also, we let QS = s, and ST = t. Referring to
Figure 7, it is obvious that SU = Kit o ((r X s) X s)
a n d T ' U = --K2t o (r)< s), whereK~ -1 = [r [.[s [2 sin 0
and /Q-21 = [r [. [s [sin 0, 0 being the angle between
r and s. It follows that S U / T ' U = - t o ((r X s) X s)/
[s J . t o (r)< s). If, as is the case with our algorithm,
the vector s is the same for all planes whose angles are
to be compared, we may replace the comparison of
cotangents with that of cotangents multiplied by Is[.
It is then straightforward to show that the computa-
tion of [s [. S U / T ' U requires four multiplications,
four additions, and one division.

Once the construction of the triangulation 5 has
been completed, i.e. the interleaving EaB of EA and
EB has been obtained, we must remove those portions
of A and B which have become internal to CH(A, B).
Concretely, this is done by constructing the data
structure describing CH(A, B) from Ea~ and from the
structures describing A and B. The data structure
describing a spatial set C may be realized as a collec-
tion of lists {L(c)}, each list L(c) corresponding to a
vertex c of C and giving the sequence of the edges
incident on c, ordered according to the previously
described criterion. By means of a vector of pointers,
each list is accessible in fixed time.

We consider the lists of vertices in Ea and EB.
Let Ea = a q , ai2, " " , air andEB = b j l , b s 2 , ' " ,

Communications February 1977
of Volume 20
the ACM Number 2

b j , . Suppose we are currently updat ing the list L(a~k):
typically, E,B contains the substring ,ya~kbjhbj~+,...
bj, alk+~, where bj h . . . b h is possibly empty and ~, is
either a~k_i or blh_, • Then we will remove f rom L(a~,)
the edges comprised between (alk, aik_x) and (a~k,
t/ik+X) , and insert the sequence (a~ k , ~')(aik, bjh), " ' " ,
(a~k, bh) : this effects the updat ing of L(ai ,) . Note that
the work required by this par t of the updat ing pro-
cedure is propor t ional to the number o f edges which
have to be added when reconstruct ing the lists of
vertices in EA and EB, i.e. it is bounded by O(p --t- q).

The updat ing task is completed by a simple dele-
t ion of the lists pertaining to vertices which have be-
come internal to the hull. Referring, for example, to
the polyhedron A, the circuit EA divides the hull into
two portions, the interior one of which is to be de-
leted. The latter is a planar graph and has O(p) edges
at most. Traversing this graph and marking its vertices
involves inspecting each edge twice. It follows that
the deletion of lists of vertices originally in A and B
requires work at most O(p q- q).

Therefore, since both the construct ion of the tri-
angulat ion 5 and the deletion of obscured port ions of
A and B are procedures which require a number of
operat ions at mos t linear in the number of vertices o f
A and B, this proper ty holds for the merging algori thm
as a whole, that is, P3(n) = O(n).

Acknowledgment . The authors acknowledge with
grati tude the constructive criticism of M.I. Shamos,
whose extremely valuable suggestions significantly
contr ibuted to improving the quality and organizat ion
o f this paper.

Received May 1975; revised May 1976

References
1. Aho, A.V., Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Compuler Algorithms. Addison-Wesley, Reading,
Mass, 1974.
2. Chand, D.R., and Kapur, S.S. An algorithm for convex
polytopes. J. ACM 17, 7 (Jan. 1970), 78-86.
3. Freeman, H., and Shapira. R. Determining the minimum-
area incasing rectangle for an arbitrary closed curve. Comm.
ACM 18, 7 (July 1975), 409-413.
4. GilBert , E.N., and Pollak, H. Steiner minimal trees. SIAM
J. Appl. Math. 16, (1968), 1-29.
5. Graham, R.L. An efficient algorithm for determining the
convex hull of a finite planar set, Inform. Proc. Lett. 1 (1972),
132-133.
6. Grtinbaum, B. Convex Polytopes. Wiley Interscience, New
York, 1967.
7. Jarvis, R.A. On the identification of the convex hull of a
finite set of points in the plane. Inform. Proc. Lett. 2, (1973),
18-21.
8. Kung, H.T., Luccio, F., and Preparata, F.P. On finding the
maxima of a set of vectors. J. ACM 22, 4 (Oct. 1975), 469-476.
9. Shamos, M.I. Problems in computational geometry. Dep.
Comptr. Sci., Yale U., New Haven, Conn., May 1975.
10. Sklansky, J. Measuring concavity on a rectangular mosaic,
IEEE Trans. Comptrs. C-21 (Dec. 1972), 1355-1364.
11. Yao, F.F. On finding the maximal elements in a set of plane
vectors. Comptr. Sci. Dep. Rep., U. of Illinois at Urbana-
Champaign, Urbana, Ill., July 1974.

Compute r
Systems

G. Bell, D. Siewiorek,
and S.H. Fuller, Editors

Transient-Free
Working-Set
Statistics
M.C. Easton and B.T. Bennett
IBM Thomas J. Watson Research Center

Transient-free average working-set size and tran-
sient-free missing-page rate for a finite sample of a
reference string are defined. Use of these statistics is
appropriate if the contents of the working set at the start
of the recorded string are unknown. If a certain sta-
tionarity condition holds, these statistics provide un-
biased estimates of expected working-set sizes, missing-
page probabilities, and interreference distance
probabilities. Two other pairs of estimators are shown
to be biased. Expressions for the transient-free statistics
are obtained in terms of interval statistics. Several
methods of computation are discussed, the usefulness of
each depending on length of the sample, number of
distinct references, and the amount of main storage
available to the computer performing the calculations.
In particular, methods are described for handling long
strings containing many distinct page names.

Key Words and Phrases: working set, estimation
program behavior

CR Categories: 4.3, 4.6, 5.5

Copyright @ 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: Computer Sciences Department, IBM
Thomas J. Watson Research Center, P.O. Box 218. Yorktown
Heights, NY 10598.

93 Communications February 1977
of Volume 20
the ACM Number 2

